Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Slides:



Advertisements
Similar presentations
CSCE 643 Computer Vision: Lucas-Kanade Registration
Advertisements

Optical Flow Estimation
Motion.
Sami Romdhani Volker Blanz Thomas Vetter University of Freiburg
Computer Vision Optical Flow
3D Computer Vision and Video Computing 3D Vision Topic 4 of Part II Visual Motion CSc I6716 Fall 2011 Cover Image/video credits: Rick Szeliski, MSR Zhigang.
Automatic Image Alignment (direct) : Computational Photography Alexei Efros, CMU, Fall 2006 with a lot of slides stolen from Steve Seitz and Rick.
Motion Estimation I What affects the induced image motion? Camera motion Object motion Scene structure.
Announcements Quiz Thursday Quiz Review Tomorrow: AV Williams 4424, 4pm. Practice Quiz handout.
Today Feature Tracking Structure from Motion on Monday (1/29)
Direct Methods for Visual Scene Reconstruction Paper by Richard Szeliski & Sing Bing Kang Presented by Kristin Branson November 7, 2002.
CSCE 641 Computer Graphics: Image Registration Jinxiang Chai.
Lecture 9 Optical Flow, Feature Tracking, Normal Flow
Feature matching and tracking Class 5 Read Section 4.1 of course notes Read Shi and Tomasi’s paper on.
Computing motion between images
Announcements Project 1 test the turn-in procedure this week (make sure your folder’s there) grading session next Thursday 2:30-5pm –10 minute slot to.
Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,
Optical flow and Tracking CISC 649/849 Spring 2009 University of Delaware.
Caltech, Oct Lihi Zelnik-Manor
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Optical Flow Estimation
Lecture 19: Optical flow CS6670: Computer Vision Noah Snavely
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Numerical Recipes (Newton-Raphson), 9.4 (first.
1 Stanford CS223B Computer Vision, Winter 2006 Lecture 7 Optical Flow Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg Corrado Slides.
Matching Compare region of image to region of image. –We talked about this for stereo. –Important for motion. Epipolar constraint unknown. But motion small.
Where have all the flowers gone? (motion and tracking) Computer Vision COS429 Fall /02 Guest lecture by Andras Ferencz Many slides adapted from.
KLT tracker & triangulation Class 6 Read Shi and Tomasi’s paper on good features to track
Computational Photography: Image Registration Jinxiang Chai.
Optical Flow Digital Photography CSE558, Spring 2003 Richard Szeliski (notes cribbed from P. Anandan)
Motion Estimation I What affects the induced image motion? Camera motion Object motion Scene structure.
Announcements Project1 due Tuesday. Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Supplemental:
CSCE 641 Computer Graphics: Image Registration Jinxiang Chai.
Motion estimation Computer Vision CSE576, Spring 2005 Richard Szeliski.
Optical flow Combination of slides from Rick Szeliski, Steve Seitz, Alyosha Efros and Bill Freeman.
Feature Tracking and Optical Flow
MASKS © 2004 Invitation to 3D vision Lecture 3 Image Primitives andCorrespondence.
Generating panorama using translational movement model.
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
Feature and object tracking algorithms for video tracking Student: Oren Shevach Instructor: Arie nakhmani.
Optical Flow Donald Tanguay June 12, Outline Description of optical flow General techniques Specific methods –Horn and Schunck (regularization)
Motion estimation Digital Visual Effects Yung-Yu Chuang with slides by Michael Black and P. Anandan.
The Measurement of Visual Motion P. Anandan Microsoft Research.
EECS 274 Computer Vision Motion Estimation.
CSE 185 Introduction to Computer Vision Feature Tracking and Optical Flow.
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Uses of Motion 3D shape reconstruction Segment objects based on motion cues Recognize events and activities Improve video quality Track objects Correct.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm Lecture #16.
Effective Optical Flow Estimation
Joint Tracking of Features and Edges STAN BIRCHFIELD AND SHRINIVAS PUNDLIK CLEMSON UNIVERSITY ABSTRACT LUCAS-KANADE AND HORN-SCHUNCK JOINT TRACKING OF.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
Motion Estimation I What affects the induced image motion?
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
Motion estimation Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/4/12 with slides by Michael Black and P. Anandan.
Optical flow and keypoint tracking Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Lucas-Kanade Image Alignment Iain Matthews. Paper Reading Simon Baker and Iain Matthews, Lucas-Kanade 20 years on: A Unifying Framework, Part 1
MASKS © 2004 Invitation to 3D vision Lecture 3 Image Primitives andCorrespondence.
Image Motion. The Information from Image Motion 3D motion between observer and scene + structure of the scene –Wallach O’Connell (1953): Kinetic depth.
Motion estimation Parametric motion (image alignment) Tracking Optical flow.
Motion estimation Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/23 with slides by Michael Black and P. Anandan.
Feature Tracking and Optical Flow
CPSC 641: Image Registration
A Closed Form Solution to Direct Motion Segmentation
Motion and Optical Flow
Digital Visual Effects Yung-Yu Chuang
Announcements more panorama slots available now
Coupled Horn-Schunck and Lukas-Kanade for image processing
Announcements more panorama slots available now
Optical flow Computer Vision Spring 2019, Lecture 21
Optical flow and keypoint tracking
Presentation transcript:

Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research

Every writer creates his own precursors. His work modifies our conception of the past, as it will modify the future. Jorge Luis Borges

History Lucas & Kanade (IUW 1981) LK BAHHSTSBJHBBL GSICETSC Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998)

Image Registration

Applications

Stereo LK BAHHSTSBJHBBL GSICETSC

Applications Stereo Dense optic flow LK BAHHSTSBJHBBL GSICETSC

Applications Stereo Dense optic flow Image mosaics LK BAHHSTSBJHBBL GSICETSC

Applications Stereo Dense optic flow Image mosaics Tracking LK BAHHSTSBJHBBL GSICETSC

Applications Stereo Dense optic flow Image mosaics Tracking Recognition LK BAHHSTSBJHBBL GSICETSC ?

Lucas & Kanade #1 Derivation

L&K Derivation 1 I0(x)I0(x)

h I0(x)I0(x) I 0 (x+h)

L&K Derivation 1 h I0(x)I0(x) I(x)I(x)

h I0(x)I0(x) I(x)I(x)

I0(x)I0(x) R I(x)I(x)

I0(x)I0(x) I(x)I(x)

h0h0 I0(x)I0(x) I(x)I(x)

I 0 (x+h 0 ) I(x)I(x)

L&K Derivation 1 I 0 (x+h 1 ) I(x)I(x)

L&K Derivation 1 I 0 (x+h k ) I(x)I(x)

L&K Derivation 1 I 0 (x+h f ) I(x)I(x)

Lucas & Kanade Derivation #2

L&K Derivation 2 Sum-of-squared-difference (SSD) error E(h) =  [ I(x) - I 0 (x+h) ] 2 x e Rx e R E(h)  [ I(x) - I 0 (x) - hI 0 ’(x) ] 2 x e Rx e R

L&K Derivation 2  2[I 0 ’(x)(I(x) - I 0 (x) ) - hI 0 ’(x) 2 ] x e Rx e R  I 0 ’(x)(I(x) - I 0 (x)) x e Rx e R h  I 0 ’(x) 2 x e Rx e R = 0 = 0

Comparison  I 0 ’(x)[I(x) - I 0 (x)] h  I 0 ’(x) 2 x x h w(x)[I(x) - I 0 (x)]  w(x) x x  I 0 ’(x)

Comparison  I 0 ’(x)[I(x) - I 0 (x)] h  I 0 ’(x) 2 x h x w(x)[I(x) - I 0 (x)]  w(x) x x  I 0 ’(x)

Generalizations

Original h)=  x eR ( E [ I(x )-(x ] 2 ) + h  I 

Original Dimension of image h)=  x eR ( E [ I(x )-(x ] 2 ) + h 1-dimensional  I  LK BAHHSTSBJHBBL GSICETSC

Generalization 1a Dimension of image h)=  x eR ( E [ I(x )-(x ] 2 ) + h 2D:  I  LK BAHHSTSBJHBBL GSICETSC

Generalization 1b Dimension of image h)=  x eR ( E [ I(x )-(x ] 2 ) + h Homogeneous 2D:  I  LK BAHHSTSBJHBBL GSICETSC

Problem A LK BAHHSTSBJHBBL GSICETSC Does the iteration converge?

Problem A Local minima:

Problem A Local minima:

Problem B -  I 0 ’(x)(I(x) - I 0 (x)) x e Rx e R h  I 0 ’(x) 2 x e Rx e R h is undefined if  I 0 ’(x) 2 is zero x e Rx e R LK BAHHSTSBJHBBL GSICETSC Zero gradient:

Problem B Zero gradient: ?

Problem B’ -  (x)(I(x) - I 0 (x)) x e Rx e R h y  2 x e Rx e R Aperture problem: LK BAHHSTSBJHBBL GSICETSC

Problem B’ No gradient along one direction: ?

Solutions to A & B Possible solutions: –Manual intervention LK BAHHSTSBJHBBL GSICETSC

Possible solutions: –Manual intervention –Zero motion default LK BAHHSTSBJHBBL GSICETSC Solutions to A & B

Possible solutions: –Manual intervention –Zero motion default –Coefficient “dampening” LK BAHHSTSBJHBBL GSICETSC Solutions to A & B

Possible solutions: –Manual intervention –Zero motion default –Coefficient “dampening” –Reliance on good features LK BAHHSTSBJHBBL GSICETSC Solutions to A & B

Possible solutions: –Manual intervention –Zero motion default –Coefficient “dampening” –Reliance on good features –Temporal filtering LK BAHHSTSBJHBBL GSICETSC Solutions to A & B

Possible solutions: –Manual intervention –Zero motion default –Coefficient “dampening” –Reliance on good features –Temporal filtering –Spatial interpolation / hierarchical estimation LK BAHHSTSBJHBBL GSICETSC Solutions to A & B

Possible solutions: –Manual intervention –Zero motion default –Coefficient “dampening” –Reliance on good features –Temporal filtering –Spatial interpolation / hierarchical estimation –Higher-order terms LK BAHHSTSBJHBBL GSICETSC Solutions to A & B

Original h)=  x eR ( E [ I(x )-(x ] 2 ) + h  I 

Original Transformations/warping of image h)=  x eR ( E [ I(x )-  I  (x ] 2 ) + h Translations: LK BAHHSTSBJHBBL GSICETSC

Problem C What about other types of motion?

Generalization 2a Transformations/warping of image A, h)=  x eR ( E [ I(AxAx )-(x ] 2 ) + h Affine:  I  LK BAHHSTSBJHBBL GSICETSC

Generalization 2a Affine:

Generalization 2b Transformations/warping of image A)=  x eR ( E [ I(A x )-(x ] 2 ) Planar perspective:  I  LK BAHHSTSBJHBBL GSICETSC

Generalization 2b Planar perspective: Affine +

Generalization 2c Transformations/warping of image h)=  x eR ( E [ I(f(x, h) )-(x ] 2 ) Other parametrized transformations  I  LK BAHHSTSBJHBBL GSICETSC

Generalization 2c Other parametrized transformations

Problem B” -(J T J) -1 J (I(f(x,h)) - I 0 (x)) h ~ Generalized aperture problem: LK BAHHSTSBJHBBL GSICETSC -  I 0 ’(x)(I(x) - I 0 (x)) x e Rx e R h  I 0 ’(x) 2 x e Rx e R

Problem B” ? Generalized aperture problem:

Original h)=  x eR ( E [ I(x )-(x ] 2 ) + h  I 

Original Image type h)=  x eR ( E [ I(x )-(x ] 2 ) + h Grayscale images  I  LK BAHHSTSBJHBBL GSICETSC

Generalization 3 Image type h)=  x eR ( E || I(x )-  I  (x || 2 ) + h Color images LK BAHHSTSBJHBBL GSICETSC

Original h)=  x eR ( E [ I(x )-(x ] 2 ) + h  I 

Original Constancy assumption h)=  x eR ( E [ I(x )-  I  (x ] 2 ) + h Brightness constancy LK BAHHSTSBJHBBL GSICETSC

Problem C What if illumination changes?

Generalization 4a Constancy assumption h,h, )=  x eR ( E [ I(x )- II (x ] 2 )+  + h Linear brightness constancy LK BAHHSTSBJHBBL GSICETSC

Generalization 4a

Generalization 4b Constancy assumption h, )=  x eR (E [ I(x )-  B (x ] 2 ) + h Illumination subspace constancy LK BAHHSTSBJHBBL GSICETSC

Problem C’ What if the texture changes?

Generalization 4c Constancy assumption h, )=  x eR (E [ I(x )- ] 2 + h Texture subspace constancy  B (x) LK BAHHSTSBJHBBL GSICETSC

Problem D Convergence is slower as #parameters increases.

Faster convergence: –Coarse-to-fine, filtering, interpolation, etc. LK BAHHSTSBJHBBL GSICETSC Solutions to D

Faster convergence: –Coarse-to-fine, filtering, interpolation, etc. –Selective parametrization Solutions to D LK BAHHSTSBJHBBL GSICETSC

Faster convergence: –Coarse-to-fine, filtering, interpolation, etc. –Selective parametrization –Offline precomputation Solutions to D LK BAHHSTSBJHBBL GSICETSC

Faster convergence: –Coarse-to-fine, filtering, interpolation, etc. –Selective parametrization –Offline precomputation Difference decomposition LK BAHHSTSBJHB GSICETSC Solutions to D BL

Solutions to D Difference decomposition

Solutions to D Difference decomposition

Faster convergence: –Coarse-to-fine, filtering, interpolation, etc. –Selective parametrization –Offline precomputation Difference decomposition –Improvements in gradient descent LK BAHHSTSBJHB GSICETSC Solutions to D BL

Faster convergence: –Coarse-to-fine, filtering, interpolation, etc. –Selective parametrization –Offline precomputation Difference decomposition –Improvements in gradient descent Multiple estimates of spatial derivatives LK BAHHSTSBJHB GSICETSC Solutions to D BL

Solutions to D Multiple estimates / state-space sampling

Generalizations  x eR [ I(x )-(x ] 2 ) + h  I  Modifications made so far:

Original Error norm h)=  x eR ( E [ I(x )-  I  (x ] 2 ) + h Squared difference: LK BAHHSTSBJHBBL GSICETSC

Problem E What about outliers?

Generalization 5a Error norm h)=  x eR ( E ( I(x )-  I  (x ) ) + h Robust error norm:  LK BAHHSTSBJHBBL GSICETSC

Original h)=  x eR ( E [ I(x )-(x ] 2 ) + h  I 

Original Image region / pixel weighting h)=  x eR ( E [ I(x )-  I  (x ] 2 ) + h Rectangular: LK BAHHSTSBJHBBL GSICETSC

Problem E’ What about background clutter?

Generalization 6a Image region / pixel weighting h)=  x eR ( E [ I(x )-  I  (x ] 2 ) + h Irregular: LK BAHHSTSBJHBBL GSICETSC

Problem E” What about foreground occlusion?

Generalization 6b Image region / pixel weighting h)=  x eR ( E [ I(x )-  I  (x ] 2 ) + h Weighted sum: w(x)w(x) LK BAHHSTSBJHBBL GSICETSC

Generalizations  x eR [ I(x )-(x ] 2 ) + h  I  Modifications made so far:

Generalization 6c Image region / pixel weighting h)=  x eR ( E [ I(x )-  I  (x ] 2 ) + h Sampled: LK BAHHSTSBJHBBL GSICETSC

Generalizations: Summary =  x eR ( I( )- w(x)w(x)   (x ) ) h) ( E f(x, h) h)=  x eR ( E [ I(x )-(x ] 2 ) + h  I 

Foresight Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998) LK BAHHSTSBJHBBL GSICETSC

Summary Generalizations –Dimension of image –Image transformations / motion models –Pixel type –Constancy assumption –Error norm –Image mask L&K ? Y n Y n Y

Summary Common problems: –Local minima –Aperture effect –Illumination changes –Convergence issues –Outliers and occlusions L&K ? Y maybe Y n

Mitigation of aperture effect: –Manual intervention –Zero motion default –Coefficient “dampening” –Elimination of poor textures –Temporal filtering –Spatial interpolation / hierarchical –Higher-order terms Summary L&K ? n Y n

Summary Better convergence: –Coarse-to-fine, filtering, etc. –Selective parametrization –Offline precomputation Difference decomposition –Improvements in gradient descent Multiple estimates of spatial derivatives L&K ? Y n maybe

Hindsight Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998)