CPSC 601 Geometric Algorithms in Biometrics Dr. Marina L. Gavrilova.

Slides:



Advertisements
Similar presentations
A Graph based Geometric Approach to Contour Extraction from Noisy Binary Images Amal Dev Parakkat, Jiju Peethambaran, Philumon Joseph and Ramanathan Muthuganapathy.
Advertisements

QR Code Recognition Based On Image Processing
Word Spotting DTW.
Automatically Annotating and Integrating Spatial Datasets Chieng-Chien Chen, Snehal Thakkar, Crail Knoblock, Cyrus Shahabi Department of Computer Science.
BIOMETRICS By Lt Cdr V Pravin 05IT6019. BIOMETRICS  Forget passwords...  Forget pin numbers...  Forget all your security concerns...
3D Shape Histograms for Similarity Search and Classification in Spatial Databases. Mihael Ankerst,Gabi Kastenmuller, Hans-Peter-Kriegel,Thomas Seidl Univ.
Fingerprint Minutiae Matching Algorithm using Distance Histogram of Neighborhood Presented By: Neeraj Sharma M.S. student, Dongseo University, Pusan South.
Contactless and Pose Invariant Biometric Identification Using Hand Surface Vivek Kanhangad, Ajay Kumar, Senior Member, IEEE, and David Zhang, Fellow, IEEE.
Image Indexing and Retrieval using Moment Invariants Imran Ahmad School of Computer Science University of Windsor – Canada.
Discrete Geometry Tutorial 2 1
Xianfeng Gu, Yaling Wang, Tony Chan, Paul Thompson, Shing-Tung Yau
Chapter 5 Raster –based algorithms in CAC. 5.1 area filling algorithm 5.2 distance transformation graph and skeleton graph generation algorithm 5.3 convolution.
The Statistics of Fingerprints A Matching Algorithm to be used in an Investigation into the Reliability of the Use of Fingerprints for Identification Bob.
EE 7740 Fingerprint Recognition. Bahadir K. Gunturk2 Biometrics Biometric recognition refers to the use of distinctive characteristics (biometric identifiers)
66: Priyanka J. Sawant 67: Ayesha A. Upadhyay 75: Sumeet Sukthankar.
Geometric Algorithms in Biometrics: Theory and Recent Developments Prof. Marina L. Gavrilova BT Laboratory Dept of Computer Science, University of Calgary,
BIOMETRICS AND NETWORK AUTHENTICATION Security Innovators.
ICIP 2000, Vancouver, Canada IVML, ECE, NTUA Face Detection: Is it only for Face Recognition?  A few years earlier  Face Detection Face Recognition 
Instructor: Dr. G. Bebis Reza Amayeh Fall 2005
Overview of Computer Vision CS491E/791E. What is Computer Vision? Deals with the development of the theoretical and algorithmic basis by which useful.
Department of Electrical and Computer Engineering Physical Biometrics Matthew Webb ECE 8741.
Iris localization algorithm based on geometrical features of cow eyes Menglu Zhang Institute of Systems Engineering
Comparison and Combination of Ear and Face Images in Appearance-Based Biometrics IEEE Trans on PAMI, VOL. 25, NO.9, 2003 Kyong Chang, Kevin W. Bowyer,
1 Street Generation for City Modeling Xavier Décoret, François Sillion iMAGIS GRAVIR/IMAG - INRIA.
Automatic Fingerprint Verification Principal Investigator Venu Govindaraju, Ph.D. Graduate Students T.Jea, Chaohang Wu, Sharat S.Chikkerur.
05/06/2005CSIS © M. Gibbons On Evaluating Open Biometric Identification Systems Spring 2005 Michael Gibbons School of Computer Science & Information Systems.
Oral Defense by Sunny Tang 15 Aug 2003
Module 14: Biometrics Introduction and Definitions The Biometrics Authentication Process Biometric System Components The Future of Biometrics J. M. Kizza.
Face Recognition Using Neural Networks Presented By: Hadis Mohseni Leila Taghavi Atefeh Mirsafian.
Biometrics: Ear Recognition
Karthiknathan Srinivasan Sanchit Aggarwal
Surface Simplification Using Quadric Error Metrics Michael Garland Paul S. Heckbert.
CPSC 601 Lecture Week 5 Hand Geometry. Outline: 1.Hand Geometry as Biometrics 2.Methods Used for Recognition 3.Illustrations and Examples 4.Some Useful.
N ew Security Approaches Biometric Technologies are Coming of Age ANIL KUMAR GUPTA & SUMIT KUMAR CHOUDHARY.
Algorithms and Modern Computer Science Dr. Marina L. Gavrilova Dept of Comp. Science, University of Calgary, AB, Canada, T2N1N4.
Ajay Kumar, Member, IEEE, and David Zhang, Senior Member, IEEE.
BIOMETRICS. BIOMETRICS BIOMETRICS  Forget passwords...  Forget pin numbers...  Forget all your security concerns...
S EGMENTATION FOR H ANDWRITTEN D OCUMENTS Omar Alaql Fab. 20, 2014.
BIOMETRICS By: Lucas Clay and Tim Myers. WHAT IS IT?  Biometrics are a method of uniquely identifying a person based on physical or behavioral traits.
Intelligent Vision Systems ENT 496 Object Shape Identification and Representation Hema C.R. Lecture 7.
Digital Image Processing CCS331 Relationships of Pixel 1.
Morphological Image Processing
Digital Image Processing - (monsoon 2003) FINAL PROJECT REPORT Project Members Sanyam Sharma Sunil Mohan Ranta Group No FINGERPRINT.
Biometrics Authentication Technology
EE 7740 Fingerprint Recognition. Bahadir K. Gunturk2 Biometrics Biometric recognition refers to the use of distinctive characteristics (biometric identifiers)
Introduction to Biometrics Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #5 Issues on Designing Biometric Systems September 7, 2005.
1 Machine Vision. 2 VISION the most powerful sense.
INTRODUCTION TO BIOMATRICS ACCESS CONTROL SYSTEM Prepared by: Jagruti Shrimali Guided by : Prof. Chirag Patel.
By Pushpita Biswas Under the guidance of Prof. S.Mukhopadhyay and Prof. P.K.Biswas.
Mesh Resampling Wolfgang Knoll, Reinhard Russ, Cornelia Hasil 1 Institute of Computer Graphics and Algorithms Vienna University of Technology.
Instructor: Mircea Nicolescu Lecture 5 CS 485 / 685 Computer Vision.
Chapter 6 Skeleton & Morphological Operation. Image Processing for Pattern Recognition Feature Extraction Acquisition Preprocessing Classification Post.
By Kyle Bickel. Road Map Biometric Authentication Biometric Factors User Authentication Factors Biometric Techniques Conclusion.
Processing Images and Video for An Impressionist Effect Automatic production of “painterly” animations from video clips. Extending existing algorithms.
Biometrics Dr. Nermin Hamza
Michael Carlino. ROADMAP -Biometrics Definition -Different types -Future -Advantages -Disadvantages -Common Biometric Report -Current Issues.
南台科技大學 資訊工程系 Region partition and feature matching based color recognition of tongue image 指導教授:李育強 報告者 :楊智雁 日期 : 2010/04/19 Pattern Recognition Letters,
Signature Recognition Using Neural Networks and Rule Based Decision Systems CSC 8810 Computational Intelligence Instructor Dr. Yanqing Zhang Presented.
Algorithms and Modern Computer Science Dr. Marina L. Gavrilova Dept of Comp. Science, University of Calgary, AB, Canada, T2N1N4.
Digital Image Processing - (monsoon 2003) FINAL PROJECT REPORT
IT472: Digital Image Processing
Hand Geometry Recognition
FINGER PRINT RECOGNITION USING MINUTIAE EXTRACTION FOR BANK LOCKER SECURITY Presented by J.VENKATA SUMAN ECE DEPARTMENT GMRIT, RAJAM.
Improving the Performance of Fingerprint Classification
PRESENTED BY Yang Jiao Timo Ahonen, Matti Pietikainen
FACE DETECTION USING ARTIFICIAL INTELLIGENCE
Final Year Project Presentation --- Magic Paint Face
Presented by :- Vishal Vijayshankar Mishra
BIOMETRICS By Lt Cdr V Pravin 05IT6019.
Algorithms and Modern Computer Science
Presentation transcript:

CPSC 601 Geometric Algorithms in Biometrics Dr. Marina L. Gavrilova

Biometric goals Verify users Identify users Synthesis - recently

Classification of identifiers Physiological biometric identifiers: fingerprints, hand geometry, eye patterns (iris and retina), facial features and other physical characteristics. Behavioral identifiers: voice, Signature typing patterns other. Analyzers based on behavioral identifiers are often less conclusive because they are subject to limitations and can exhibit complex patterns.

Long-Term Goals Establish acceptable error rates Decrease possibility of error Improve methodology (new biometrics, combination) Make implementation more robust

Geometric proximity and topology Methods based on concepts of proximity of geometric sets and extracting and utilizing topological information on the data are: Techniques for computing the medial axis transform Distance distribution computation using weighted metric functions Use of Voronoi diagram and Delaunay triangulation for data processing and matching Topology-based approach for feature extractions along the boundary Computational geometry methods for pre-processing and pattern matching Topology-based approach for generation of biometric information

Outline Distance Distribution Computation Pattern matching Methods for identification and synthesis Feature extraction

Data source Sensors Data source Sensors Pattern matching Feature extraction Data source Sensors Identification /Verification Reporting Data CollectionDecision Transmission Storage Compression module Data Base Processing Biometric System

Data source Sensors Data source Sensors Feature extraction Data pre- processing Data source Sensors Pattern matching Reporting Data Collection Decision Transmission Storage Compression module Data Bas e Processing CG methods Computational Geometry in Biometrics

Threshold distance A threshold distance: declare distances less than the threshold as a "match" and those greater to indicate "non-match". Genuine distribution Inter-template distribution Imposter distribution

Use of metrics Regularity of metric allows to measure the distances from some distinct features of the template more precisely, and ignore minor discrepancies originated from noise and imprecise measurement while obtaining the data. We presume that the behavioral identifiers, such as typing pattern, voice and handwriting styles will be less susceptible to improvement using the proposed weighted distance methodology than the physiological identifiers.

Pattern Matching Aside from a problem of measuring the distance, pattern matching between the template and the measured biometric characteristic is a very serious problem on its own. Some preliminary research, mainly in the area of image processing, should be utilized in order to approach the problem from the right angle.

Template comparison The most common methods are based on bit- map comparison techniques, scaling, rotating and modifying image to fit the template through the use of linear operators, and extracting template boundaries or skeleton (also called medial axis) for the comparison purposes. In addition, template comparison methods also differ, being based on either pixel to pixel, important features (such as minutae) positions, or boundary/skeleton comparison.

Template Matching approach to Symbol Recognition Compare an image with each template and see which one gives the best mach (courtesy of Prof. Jim Parker, U of C)

Good Match Image Template Most of the pixels overlap means a good match (courtesy of Prof. Jim Parker, U of C)

Distance transform Definition 1. Given an n x m binary image I of white and black pixels, the distance transform of I is a map that assigns to each pixel the distance to the nearest black pixel (a feature). The distance transform method introduced in [Gavrilova and Alsuwayel] is based on fast scans of image in the top-bottom and left-right directions using a fast polygonal chain maintenance algorithm. After the distance transform is build, it can be used to visualize proximity information in a form of temperature map. As the distance from the black pixels (features) increases, the color intensity changes.

Distance Transform Given an n x m binary image I of white and black pixels, the distance transform of I is a map that assigns to each pixel the distance to the nearest black pixel (a feature).

Thermogram vs. distance transform Thermogram of an ear (Brent Griffith, Infrared Thermography Laboratory, Lawrence Berkeley National Laboratory )

What is a Distance Transform? Given an n x m binary image I of white and black pixels, the distance transform of I is a map that assigns to each pixel the distance to the nearest black pixel (a feature).

What is a Feature Transform? The feature transform of I is a map that assigns to each pixel the feature that is nearest to it.

L 1 Distance Transform Algorithm

L  Distance Transform Algorithm

A Fast Algorithm for Computing Euclidean Distance Transform Works in Euclidean Metric Optimal – linear in the number of pixels Proceed in two passes over the image, top down and bottom up For each row Maintain a polygonal chain - a set of pixels in which the nearest feature may lies Updates the chain for next row by pruning - it becomes the minimal set of pixels Prune Endpoints and Internal Vertices

What is a Chain? One Chain for the row Contains at most one pixel per column Contains the lowest pixel in the column After pruning, it contains only those points that will be nearest features to some points in the row Dynamically updated from row to row

Example of a a Chain

Pruning Endpoints Identifying superfluous endpoints

Pruning Internal Points Point q is removed

Point q remains Pruning Internal Points

Algorithm Walkthrough

Experimental results Algm 1 – pruning Algm 2 – no pruning Graph shows running time in sec. (OY axis) vs. number of pixels in image (OX axis) Results: Significant improvement in running time Linear function grows slowly

Algm 1 with pruning was tested Saturation levels: 5%, 15%, 30% Results: Linear Running Time, Regardless of Saturation (% of black pixels in image) Experimental results

Generalized Voronoi diagram A generalized Voronoi diagram for a set of objects in the space is the set of generalized Voronoi regions according to some proximity rule. A generalized Delaunay triangulation is the dual of the generalized Voronoi diagram obtained by joining all pairs of sites whose Voronoi regions share a common Voronoi edge.

Example: VD and DT in power metric

Voronoi methods in biometrics The methodology is making its way to the core methods of biometrics, such as fingerprint identification, iris and retina matching, face analysis, ear geometry and others (see recent works by [Xiao, Zhang, Burge]. The methods are using Voronoi diagram to partition the area of a studies image and compute some important features (such as areas of Voronoi region, boundary simplification etc.) and compare with similarly obtained characteristics of other biometric data.

Medial axis transform Definition 2. The medial axis, or skeleton of the set D, denoted M(D), is defined as the locus of points inside D which lie at the centers of all closed discs (or spheres) which are maximal in D, together with the limit points of this locus.

Medial axis transform

Singular-point detection In mane biometric problems, such as detecting singular points in fingerprint images, the quality of the result and false detection rates depend directly on the quality of the data (image, print, recording etc). To improve the result, pre-processing can be used. In some cases, it is not enough to simply enhance the image properties. Many cases of false detection happen at the boundary of an image or at place where lines are of irregular shape. A method based on extending the lines of the image beyond the boundary in the projected direction so that the singular point can be computed more precisely. For the second case, topology-based method are traditionally used to smooth the irregularity (including the interpolation techniques) [Maltony, Jain, Zhan]

Singular point detection Singular point detection (top to bottom): singular point close to boundary (lower); regular pattern.

(a) Thinned Image (b) Minutia Extracted DT for minutiae point extraction

(a) Purified minutia (b) DT constructed based (a)

DT for matching Delaunay Triangulation can be used for Matching For each Delaunay triangle, the length of three edges, the three angles and the ridge numbers between each edge are recorded to construct a 9 dimensional local vector to find the best-matched local structure in two fingerprints. For each Delaunay triangle, the length of three edges, the three angles and the ridge numbers between each edge are recorded to construct a 9 dimensional local vector to find the best-matched local structure in two fingerprints.

Triangle edge comparison in minutiae matching θ2θ2 B θ1θ1 A θ’ 2 B’B’ θ' 1 A’A’

Geometry in facial synthesis Face recognition, as well as facial emotion simulation and face morphing, often rely on Geometric relations among facial features (symmetry, size/positions, wrinkle locations, etc).

Image Morphing Two steps: 1) Establish feature correspondences: manually 2) Mapping function: define spatial relationship between all points in both images + = Examples from the “facial attractiveness” project: corresponding points

Geometric areas and topology for facial expression synthesis

Portrait Generator: edge detection for wrinkles

Starting FrameEnding Frame

PhotoFit of FaceGen

Topology-based solution to generating biometric information Finally, one of the most challenging areas is a recently emerged problem of generating biometric information, or so- called inverse problem in biometrics. In order to verify the validity of algorithms being developed, and to ensure that the methods work efficiently and with low error rates in real-life applications, a number of biometric data can be artificially created, resembling samples taken from live subjects. In order to perform this procedure, a variety of methods should be used, but the idea that we explore is based on the extraction of important topological information from the relatively small set of samples (such as boundary, skeleton, important features etc), applying variety of computational geometry methods, and then using these geometric samples to generate the adequate set of test data.

Courtesy of: Michal Dobes and Libor Machala, Iris Database, Iris Synthesis: Original Set

Combinations

Output Irises Courtesy of: Michal Dobes and Libor Machala, Iris Database,

Conclusions Geometric data structures and methodology based on proximity and topology prove to be useful for emerging field of biometric technologies. The overview discussed existing computational geometry methods and their recently developed applications in biometrics We suggest a number of new approaches for investigation of specific biometric problems, including those of synthesis of biometric information.