Rate-Distortion Analysis and Streaming of SP and SI Frames Eric Setton and Bernd Girod CSVT, 2006.

Slides:



Advertisements
Similar presentations
International Telecommunication Union Workshop on Standardization in E-health Geneva, May 2003 MPEG-4 video transmission for ambulatory application.
Advertisements

2004 NTU CSIE 1 Ch.6 H.264/AVC Part2 (pp.200~222) Chun-Wei Hsieh.
Advances in Network-adaptive Video Streaming Bernd Girod J. Chakareski, M. Kalman, Y. J. Liang, E. Setton, R. Zhang Information Systems Laboratory Department.
Efficient Bit Allocation and CTU level Rate Control for HEVC Picture Coding Symposium, 2013, IEEE Junjun Si, Siwei Ma, Wen Gao Insitute of Digital Media,
Depth Coding Using a Boundary Reconstruction Filter for 3-D Video Systems Kwan-Jung Oh, Anthony Vetro, Fellow, IEEE, Yo-Sung Ho, Senior Member, IEEE CSVT,
On the use of hierarchical prediction structures for efficient summary generation of H.264/AVC bitstreams Luis Herranz, Jose´ M. Martı´nez Image Communication.
Reji Mathew and David S. Taubman CSVT  Introduction  Quad-tree representation  Quad-tree motion modeling  Motion vector prediction strategies.
Mohamed Hefeeda Cross-Layer Mac-Application Layer for Adaptive Retransmission and Packetization Using Langrangian Optimization Farid Molazem Cmpt 820 Fall.
Recursive End-to-end Distortion Estimation with Model-based Cross-correlation Approximation Hua Yang, Kenneth Rose Signal Compression Lab University of.
Overview of Error Resiliency Schemes in H.264/AVC Standard Sunil Kumar, Liyang Xu, Mrinal K. Mandal, and Sethuraman Panchanathan Elsevier Journal of Visual.
Optimum Bit Allocation and Rate Control for H.264/AVC Wu Yuan, Shouxun Lin, Yongdong Zhang, Wen Yuan, and Haiyong Luo CSVT 2006.
Congestion-Distortion Optimized Peer-to-Peer Video Streaming Eric Setton*, Jeonghun Noh and Bernd Girod Information Systems Laboratory Stanford University.
Video Transmission Adopting Scalable Video Coding over Time- varying Networks Chun-Su Park, Nam-Hyeong Kim, Sang-Hee Park, Goo-Rak Kwon, and Sung-Jea Ko,
Optimal Stream Replication for Video Simulcasting Jiangchuan Liu, Member, IEEE, Bo Li, Senior Member, IEEE, and Ya-Qin Zhang, Fellow, IEEE IEEE TRANSACTIONS.
Department of Electrical Engineering Stanford University Yi Liang, Eric Setton and Bernd Girod Channel-Adaptive Video Streaming Using Packet Path Diversity.
An Error-Resilient GOP Structure for Robust Video Transmission Tao Fang, Lap-Pui Chau Electrical and Electronic Engineering, Nanyan Techonological University.
Reinventing Compression: The New Paradigm of Distributed Video Coding Bernd Girod Information Systems Laboratory Stanford University.
Efficient Motion Vector Recovery Algorithm for H.264 Based on a Polynomial Model Jinghong Zheng and Lap-Pui Chau IEEE TRANSACTIONS ON MULTIMEDIA, June.
Video streaming with SP and SI frames Chuan-Yu Cho In proceeding of VCIP 2005 Eric Setton and Bernd Girod, Information Systems Laboratory, Stanford University,
Congestion-Aware Video Streaming over Peer-to-Peer Networks Eric Setton Information Systems Laboratory Stanford University.
The SP- and SI-Frames Design for H.264/AVC Marta Karczewicz and Ragip Kurceren IEEE Trans. on Circuit and System for Video Technology, Vol.13, No. 7, July.
MultiHypothesis Pictures For H.26L Markus Flierl Telecommunications Laboratory University of Erlangen-Nuremberg Erlangen, Germany
Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li, Fellow, IEEE.
Scalable Wavelet Video Coding Using Aliasing- Reduced Hierarchical Motion Compensation Xuguang Yang, Member, IEEE, and Kannan Ramchandran, Member, IEEE.
Encoder and Decoder Optimization for Source-Channel Prediction in Error Resilient Video Transmission Hua Yang and Kenneth Rose Signal Compression Lab ECE.
Efficient Fine Granularity Scalability Using Adaptive Leaky Factor Yunlong Gao and Lap-Pui Chau, Senior Member, IEEE IEEE TRANSACTIONS ON BROADCASTING,
Wyner-Ziv Residual Coding of Video Anne Aaron, David Varodayan and Bernd Girod Information Systems Laboratory Stanford University.
Seamless Switching of Scalable Video Bitstreams for Efficient Streaming Xiaoyan Sun, Feng Wu, Shipeng Li, Wen, Gao, and Ya-Qin Zhang.
Investigation of Motion-Compensated Lifted Wavelet Transforms Information Systems Laboratory Department of Electrical Engineering Stanford University Markus.
Source-Channel Prediction in Error Resilient Video Coding Hua Yang and Kenneth Rose Signal Compression Laboratory ECE Department University of California,
1 Department of Electrical Engineering Stanford University Anne Aaron, Shantanu Rane and Bernd Girod Wyner-Ziv Video Coding with Hash-Based Motion Compensation.
Rate-Distortion Optimized Motion Estimation for Error Resilient Video Coding Hua Yang and Kenneth Rose Signal Compression Lab ECE Department University.
Chapter 8. Linear Systems with Random Inputs 1 0. Introduction 1. Linear system fundamentals 2. Random signal response of linear systems Spectral.
H.264/AVC for Wireless Applications Thomas Stockhammer, and Thomas Wiegand Institute for Communications Engineering, Munich University of Technology, Germany.
4/24/2002SCL UCSB1 Optimal End-to-end Distortion Estimation for Drift Management in Scalable Video Coding H. Yang, R. Zhang and K. Rose Signal Compression.
1 Department of Electrical Engineering, Stanford University Anne Aaron, Shantanu Rane, Eric Setton and Bernd Girod Transform-domain Wyner-Ziv Codec for.
Distributed Video Coding Bernd Girod, Anne Margot Aaron, Shantanu Rane, and David Rebollo-Monedero IEEE Proceedings 2005.
Distributed Video Coding VLBV, Sardinia, September 16, 2005 Bernd Girod Information Systems Laboratory Stanford University.
09/24/02ICIP20021 Drift Management and Adaptive Bit Rate Allocation in Scalable Video Coding H. Yang, R. Zhang and K. Rose Signal Compression Lab ECE Department.
G. Valenzise *, M. Tagliasacchi *, S. Tubaro *, L. Piccarreta Picture Coding Symposium 2007 November 7-9, 2007 – Lisboa, Portugal * Dipartimento di Elettronica.
Kai-Chao Yang Hierarchical Prediction Structures in H.264/AVC.
Philipp Merkle, Aljoscha Smolic Karsten Müller, Thomas Wiegand CSVT 2007.
Compression Efficiency and Delay Tradeoffs for Hierarchical B-Pictures and Pulsed-Quality Frames Athanasios Leontaris, Pamela C. Cosman Univ. of California.
1/75 Embedded Audio Coder Jin Li 2/75 Outline Introduction Embedded audio coder - Algorithm MLT with window switching Quantizer Entropy coder Bitstream.
FEC and RDO in SVC Thomas Wiegand 1. Outline Introduction SVC Bit-Stream Raptor Codes Layer-Aware FEC Simulation Results Linear Signal Model Description.
Videos Mei-Chen Yeh. Outline Video representation Basic video compression concepts – Motion estimation and compensation Some slides are modified from.
Layered Coding Basic Overview. Outline Pyramidal Coding Scalability in the Standard Codecs Layered Coding with Wavelets Conclusion.
Adaptive Multi-path Prediction for Error Resilient H.264 Coding Xiaosong Zhou, C.-C. Jay Kuo University of Southern California Multimedia Signal Processing.
Sub pixel motion estimation for Wyner-Ziv side information generation Subrahmanya M V (Under the guidance of Dr. Rao and Dr.Jin-soo Kim)
2 3 Be introduced in H.264 FRExt profile, but most H.264 profiles do not support it. Do not need motion estimation operation.
報告人:林祐沁 學生 指導教授:童曉儒 老師 March 2, Wireless Video Surveillance Server Based on CDMA1x and H.264.
A New Coding Mode for Error Resilient Video EE368C Final Presentation Stanford University Sangoh Jeong Mar.8, 2001.
Guillaume Laroche, Joel Jung, Beatrice Pesquet-Popescu CSVT
Chapter 4: Baseband Pulse Transmission Digital Communication Systems 2012 R.Sokullu1/46 CHAPTER 4 BASEBAND PULSE TRANSMISSION.
Computational Complexity Management of a Real-Time H.264/AVC Encoder C S Kannangara, I E Richardson, and A J Miller CSVT
Wyner-Ziv Coding of Motion Video Presented by fakewen.
EE 3220: Digital Communication Dr. Hassan Yousif Ahmed Department of Electrical Engineering College of Engineering at Wadi Al Dawaser Prince Sattam bin.
Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li Presented by : Brian Eriksson.
MPEG4 Fine Grained Scalable Multi-Resolution Layered Video Encoding Authors from: University of Georgia Speaker: Chang-Kuan Lin.
Encoding Stored Video for Streaming Applications IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 2, FEBRUARY 2001 I.-Ming.
A Comparison of RaDiO and CoDiO over IEEE WLANs May 25 th Jeonghun Noh Deepesh Jain A Comparison of RaDiO and CoDiO over IEEE WLANs.
Fine-granular Motion Matching for Inter-view Motion Skip Mode in Multi-view Video Coding Haitao Yanh, Yilin Chang, Junyan Huo CSVT.
H.264/SVC Video Transmission Over P2P Networks
Optimal Mode Selection For Robust Video Transmission
2018/9/16 Distributed Source Coding Using Syndromes (DISCUS): Design and Construction S.Sandeep Pradhan, Kannan Ramchandran IEEE Transactions on Information.
Streaming To Mobile Users In A Peer-to-Peer Network
Centrality Bias Measure for High Density QR Code Module Recognition
Standards Presentation ECE 8873 – Data Compression and Modeling
Foundation of Video Coding Part II: Scalar and Vector Quantization
UNIT 5. Linear Systems with Random Inputs
Presentation transcript:

Rate-Distortion Analysis and Streaming of SP and SI Frames Eric Setton and Bernd Girod CSVT, 2006

Outline Introduction RD Analysis of SP and SI Frames Rate-Distortion Performance Optimal Setting for Streaming Performance Analysis

Introduction SP/SI frame –Part of H.264 Ext Profile. –Reconstructed without drift by using different predictors. Drift-free bitstream switching. PP SP PP SP 1 P SI P SP 2 P SP 12 Bitstream 1 Bitstream 2 P Primary SPSecondary SP 12 3 MV 12 Reference frame Current frame Frames_Design_for_H.264_AVC.ppthttp://vc.cs.nthu.edu.tw/home/paper/codfiles/cycho/ /The_SP-_and_SI- Frames_Design_for_H.264_AVC.ppt by CYCho

RD Analysis of SP and SI Frames (1) RD function of an ideal video encoder – –Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing And Communications. Prentice Hall, 2002, pp Power spectral density (PSD) of zero-mean Gaussian signal a. Intermediate parameter Spatial frequency Input zero-mean Gaussian signal

RD Analysis of SP and SI Frames (2) RD analysis of primary SP pictures  Rate  Distortion Assumptions   D SP1 = D 1 + D 2  (at high rates) D1D1 D2D2

RD Analysis of SP and SI Frames (3) RD analysis of SI and secondary SP pictures  Rate  Distortion 33  3 >  1 if switching up  3 <  1 if switching down

Rate-Distortion Performance Theoretical vs. experimental RD performance  2 = 0.9  1,  3 = 1.2  1 for switching up, and  3 = 0.5  1 for switching down. QCIF, Foreman, 30fps SP ≒ 1.9P SI ≒ 1.35I

Optimal Setting for Streaming (1) Minimize s.t. Minimize s.t. PP SP P SI P x : The probability of transmitting an SI frame D : The distortion of rest stream At high rates, Solution:  D = D SP1 = D 1 + D 2

Optimal Setting for Streaming (2) = =

Performance Analysis SP BBBPBBBPBBBPBBB I BBBPBBBPBBBPBBB I SI BBBPBBBPBBBPBBB

Streaming of SP and SI Pictures dfiles/cycho/ /Video_strea ming_with_SP_and_SI_frames.ppthttp://vc.cs.nthu.edu.tw/home/paper/co dfiles/cycho/ /Video_strea ming_with_SP_and_SI_frames.ppt