Massonne et al., (1999) Diamond bearing inclusions in garnet (after Stöckhert et al., 2001)

Slides:



Advertisements
Similar presentations
Plate Tectonics 6.E.2.2 Explain how crustal plates and ocean basins are formed, move and interact using earthquakes, heat flow and volcanoes.
Advertisements

Warm Up 11/26 The Hawaiian Islands were formed when the Pacific Plate moved over ____. a. a hot spot c. the Aleutian Plate b. a subduction zone d.
Continental drift: an idea before its time
Noble dame, 1959 © Succession Picasso / VG Bild-Kunst, Bonn 2001 Sibylla von Cleve als Braut, Lukas Cranach d. Ä. ( ) Visualization is important!
Plate Tectonics.
Metamorphic core complexEarth *Geological context: syn to post-orogenic extension -interpreted as MCC for the first time in 1980 in the « Basin.
SC.912.e.6.1 Describe and differentiate the layers of Earth and the interactions among them.
Plate Tectonics. What is Plate Tectonics? According to the plate tectonics theory, the uppermost mantle, along with the overlying crust, behaves as a.
GreatBreak: Grand Challenges in Geodynamics. Characteristics of a Desirable Geodynamic Model Ties together observational constraints on current state.
Happy Valentine’s Day! Weather report Review Plate tectonics Review session: tonight 5-7, Chavez 110.
Plate Boundaries  According to the Plate tectonic theory, three boundaries exist at the edges of each tectonic plate. 1) Divergent Boundary (Ridge) 2)
Focus for Wednesday: Interpreting the Landscape of the Grand Canyon Look at Landscape through different lenses— with different concepts.
Sea-Floor Spreading Copy the following map of the ocean floor between continents. Label the parts of your map as we go along.
Plate Tectonics  Earth is a dynamic planet: its land masses and oceans are in constant motion. Continental blocks split to form new oceans.
mountains, mountain building, & growth of continents
13. Subduction Zones William Wilcock
Chapter 8 Notes Place these notes into your Geology Notebooks.
Astenosphere entrainment at a subduction zone: numerical and laboratory experiments J. Hasenclever*, J. Phipps Morgan †, M. Hort*, L. Rüpke ‡ * Institut.
Tectonic boundaries and hot spots. A useful reference dynamicearth/sitemap.html
Lesson2c – Plate tectonics The Effects of Plate Tectonics.
Formation of the Earth. Previous Theories  Continental Drift Theory  Developed by Alfred Wegner (1900’s)  Believed continents were once all combined.
The Theory of Plate Tectonics. Plate Tectonics Power Point Unit B: The Dynamic Earth   Learning Target: 4b) Compare and contrast (movement, location,
Convection and Seafloor Spreading  To fully understand the theories of Continental Drift and Plate Tectonics, you must first have an understanding of.
Plate Tectonics.
Theory of Plate Tectonics. How do we know the plates exist?  Earthquake and Volcano Zones  Ocean floor features (Trenches and Mid-Oceanic ridges)
Plate Tectonics, Continental Drift, Faults and Folds Chapter 7 Sections 1-4.
Discovering Plate Tectonics: Major Plate Boundaries Hook Earth Science.
Plate Tectonics. Plate Tectonics is a theory that describes the formation, movements, and interactions of Earth’s plates.
Theory of Plate Tectonics. Plate Tectonics Is theory that states that pieces of the Earth’s crust are in constant, slow motion. This motion is caused.
Plate Tectonics. Theory of Plate Tectonics  Earth’s crust and part of the upper mantle are broken into sections  Sections of Earth’s crust = PLATES.
Possible Causes of Tectonic Plate Motion. Tectonic vs. Lithospheric Plates A tectonic plate is a piece of lithosphere that moves around on top of the.
Intro Objective 10/15/12 Describe the three forces thought to move tectonic plates. Pick up worksheet from front table. Weekly Worksheet #8: What do you.
Theory of Plate Tectonics. How do we know the plates exist?  Earthquake and Volcano Zones  Ocean floor features (Trenches and Mid-Oceanic ridges)
Chapter 9 Plate Boundaries.
THE MECHANISMS OF PLATE MOTION
What is the thermal structure of a subduction zone?
Divergent Plate Boundaries
Convergent Plate Boundaries
Convergent and Transform Boundaries
Plate Boundaries: Divergent, Convergent, and Transform
Sections of Crust Moving Around!
Mountain Building “Tectonic Forces at Work”
Carla Braitenberg Department of Mathematics and Geosciences
Ocean-Ocean Subduction Zones System
Plate Boundaries Convergent plate boundaries (destructive margins)
PLATES AND TECTONIC MOVEMENT
9-4 Mechanisms of Plate Motion
Plate Tectonics How do rock layers form?.
9.5 – Mechanisms of Plate Motion
Section 10.2 Types of Plate Boundaries
9.3 Actions at Plate Boundaries
12.2 Features of Plate Tectonics
The Theory of Plate Tectonics
Mechanisms of Plate Motion
Chapter 10 section 2 Plate Tectonics.
TESTING PLATE TECTONICS
Theory of Plate Tectonics
Plate Tectonics.
Place these notes into your Geology Notebooks.
Transform Plate Boundaries
9.3 Actions at Plate Boundaries
Mid Atlantic Ridge (total length of about 60,000 km)
Sci. 4-3 The Theory of Plate Tectonics Pages
The Theory of Plate Tectonics
Part 3: Plate Interactions
The plates are pulled and pushed, created and recycled, by convection currents within a solid but hot, plastic mantle.
Plate Boundaries: Divergent, Convergent, and Transform
9.3 Actions at Plate Boundaries
Possible Causes of Tectonic Plate Motion
Presentation transcript:

Massonne et al., (1999)

Diamond bearing inclusions in garnet (after Stöckhert et al., 2001)

After Massonne et al. (1999), Stöckhert et al. (2001)

Geodynamic environment

Krohe (1996) Franke (1989)

Zulauf (1997) Subduction Subduction+Collision Collision Delamination+detachment+underplating

Exhumation of high-pressure rocks during delamination+detachment+underplating stage

Numerical modeling: Schott & Schmeling (1998), Willner et al. (2002)

Depth=200 km Willner et al. (2002) Formation and destruction of deep crustal wedge during detachment of the lithosphere Depth=150 km Depth=100 km

Question: how and whether subduction->collision->detachment sequence of events might be genetically related to origin of the diamond bearing rocks? Method: numerical geodynamic modeling

1600 x 600 km 370 x 200km 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1400 o C Weak zone Lithosphere Asthenosphere 1600 o C Mantle plume upwelling Slab push Slab pull 1400 o C Continental crust Oceanic crust Sediments Serpentinized mantle Hydrated zone Rock samples Antigorite stability field Hydration front Numerical model (full convection solution) High resolution region

Animation “Typical evolution”

0.00 Myr 890 x 470 km 370 x 200km 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Initial configuration

0.21 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

0.68 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

1.4 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

2.1 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

3.1 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

4.6 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

7.7 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

11.3 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

15.0 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

18.9 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

22.7 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

25.3 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

26.2 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Subduction

27.0 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Collision

27.7 Myr 400 o C 800 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Collision ~160 km (bottom of the lithosphere) 1200 o C ~160 km

28.3 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Collision, Delamination Slab delamination

28.9 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Collision, Delamination, Necking Slab delamination Slab necking

29.4 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Collision, Necking Slab necking

29.8 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating Mantle underplating

30.3 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating Mantle underplating

30.7 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating Mantle underplating

30.9 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating

31.2 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating

31.5 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating

31.8 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structure growth

32.1 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

32.4 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

32.6 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

32.9 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

33.3 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

33.6 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

34.1 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

36.4 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

37.5 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C Extension, Detachment, Underplating, Domal structures Domal structures growth

39.6 Myr 400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C The End Domal structures growth

200 o C 400 o C 600 o C 800 o C 1000 o C ~160 km (bottom of the lithosphere) Stoeckhert et al. (2001) Cooling stage

“Heating+Cooling during subduction” Gerya & Stoeckhert (2002) Active margin B BEGIN

Isobaric cooling 19.3 Myr 1000 o C 200 o C 800 o C 400 o C 1200 o C 600 o C Stoeckhert et al. (2001) Cooling stage ~100 km (bottom of the lithosphere)

What does slab break-off look like? ? ?

Animation “Slow necking”

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 5.0 Myr Collision

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 5.8 Myr Collision

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 6.6 Myr Collision + Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 7.3 Myr Collision + Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 8.0 Myr Collision + Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 8.7 Myr Collision + Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 9.3 Myr Collision + Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 10.0 Myr Collision + Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 10.7 Myr Collision + Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 11.4 Myr Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 12.1 Myr Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 12.8 Myr Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 13.4 Myr Delamination

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 14.0 Myr Detachment

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 14.6 Myr Detachment

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 15.2 Myr Detachment

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 15.7 Myr Detachment

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 16.3 Myr Detachment

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 16.9 Myr Detachment

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 17.5 Myr End

Animation “Rapid necking”

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 30.6 Myr Collision

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 31.3 Myr Collision

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 32.3 Myr Collision

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 33.1 Myr Detachment

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 34.1 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 34.8 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 35.4 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 35.9 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 36.3 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 36.7 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 37.0 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 37.3 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 37.6 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 38.0 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 38.4 Myr Extension + Underplating

400 o C 800 o C 1200 o C 200 o C 400 o C 600 o C 800 o C 1000 o C 1200 o C 38.8 Myr End

Symmetric necking (no preexisting weak zone) Assymmetric necking by shearing along preexisting weak zone But is this really “break-off”?

33 Myr 28 Myr 30 Myr 29 Myr