Linear Analysis of Infrared CO Spectra Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry, The Enrico Fermi Institute, University.

Slides:



Advertisements
Similar presentations
Visible transitions from ground-state H 3 + and their Einstein-B coefficients measured with high-sensitivity action spectroscopy Dr. Annemieke Petrignani.
Advertisements

Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J.
THE NITROGEN ISOTOPE RATIO IN DENSE MOLECULAR CLOUDS Gilles Adande Lucy M. Ziurys Department of Chemistry, Department of Astronomy, Steward Observatory.
Implications of the H H 2  H 2 + H 3 + reaction for the ortho- to para-H 3 + ratio in interstellar clouds Kyle N. Crabtree, Lt. Col. Brian A. Tom,
Estimated SOFT X-ray Spectrum and Ionization of Molecular Hydrogen in the Central Molecular Zone of the Galactic Center Masahiro Notani and Takeshi Oka.
Ionization of H 2 by X-rays in the Central Molecular Zone of the Galactic Center Masahiro Notani and Takeshi Oka Department of Astronomy and Astrophysics,
The nature of the dust and gas in the nucleus of NGC 1068.
Alexandre Faure, Claire Rist, Yohann Scribano, Pierre Valiron, Laurent Wiesenfeld Laboratoire d’Astrophysique de Grenoble Mathematical Methods for Ab Initio.
Benjamin McCall and Takeshi Oka University of Chicago Kenneth H. Hinkle National Optical Astronomy Observatories Thomas R. Geballe Joint Astronomy Centre.
The Non-Thermal Rotational Distribution of Interstellar H 3 + (ApJ, in press ) Takeshi Oka and Erik Epp, Department of Astronomy and Astrophysics, and.
The (3, 3) metastable rotational level of H 3 + Takeshi Oka Department of Chemistry and Department of Astronomy and Astrophysics The Enrico Fermi Institute,
Galactic Center Region Concentrated stars and interstellar matter High Energy Density (gravity, MHD, kinetic) Strong magnetic field :B ~ mG High external.
Revelation of a vast amount of warm (~ 250 K) and diffuse (≤ 100 cm -3 ) gas and high ionization rate (ζ > s -1 ) in the Central Molecular Zone.
H 3 +, in planetary Ionospheres: Emission Spectrum 岡 武史 Department of Astronomy and Astrophysics, Departmen of Chemistry and The Enrico Fermi Institute,
Hot and Diffuse Gas near the Galactic Center Probed by Metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max Planck Institute for Astronomy.
Spectroscopy in Solid Hydrogen Takeshi Oka Department of Chemistry and Department of Astronomy and Astrophysics The Enrico Fermi Institute, the University.
Hot and diffuse gas near the Galactic center probed by metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max-Planck-Institut für Astronomie.
H3+H3+. Search for hot and bright stars for H 3 + spectroscopy Near the Galactic center Takeshi Oka Department of Astronomy and Astrophysics and Department.
Hot and Diffuse Gas near the Galactic Center Probed by Metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max-Planck-Institut für Astronomie.
Warm and Diffuse Gas and High Ionizzation Rate Near the Galactic Center from 140 pc West to 85 pc East of Sgr A* 66th OSU International Symposium, June.
October, 1970 H2S2H2S2 March 28-31, 1966, APS Durham, NC April 22, 1966, Invitation to give a seminar.
H 3 + : A new probe of the Galactic center Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry, The Enrico Fermi Institute,
The Galactic center region Concentrated stars and interstellar matter High energy density (gravity, MHD, kinetic) Strong magnetic field :B ~ mG High external.
CH +, CH, and CN Emission from the Red Rectangle Lewis M. Hobbs, Julie A. Thorburn, D. G. York, Takeshi Oka, Department of Astronomy and Astrophysics,
Two Sightlines toward the Galactic Center with Remarkable H 3 + and CO Spectra Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry,
H 3 + in the Central Molecular Zone of the Galactic Center: Revelation of a New Category of Gas Takeshi Oka Department of Astronomy and Astrophysics and.
Thermalization of interstellar CO Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry The Enrico Fermi Institute, University.
H 2 » H Scoville and Sanders 1987 Molecule or Atom? The Central Molecular Zone CMZ H2H2 H H+H+
Takeshi Oka Department of Astronomy and Astrophysics And Department of Chemistry The Enrico Fermi Institute, University of Chicago University of Illinois,
Interstellar H 3 + in Metastable Rotational Levels Takeshi Oka and Erik Epp Department of Chemistry and Department of Astronomy and Astrophysics, The Enrico.
H 3 +, the new probe for ionization rate  Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry The Enrico Fermi Institute,
H3+H3+. H 3 +, a new astrophysical probe: Revelation of warm and diffuse gas near the Galactic center Takeshi Oka Department of Astronomy and Astrophysics.
HD , the C 2, C 3 rich sightline. The C 2 Diffuse Interstellar Bands Takeshi Oka Department of Astronomy and Astrophysics And Department of Chemistry.
SPARX: Simulation Platform for Astrophysical Radiative Xfer SPARX, a new numerical program for non-LTE radiative transfer has been developed. In order.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Absorption line survey toward the Galactic center II Miwa Goto Max-Planck-Institut fuer Astronomie Heidelberg, Germany contribution from Subaru to the.
The Central Molecular Zone The central region of our Galaxy contains a super-massive black hole and a high concentration of stars and interstellar matter.
Spectroscopic Studies of the H H 2 Reaction at Astrophysically Relevant Temperatures Brian A. Tom, Brett A. McGuire, Lauren E. Moore, Thomas J. Wood,
H 3 + : A Case Study for the Importance of Molecular Laboratory Astrophysics Ben McCall Dept. of ChemistryDept. of Astronomy.
Mellinger Lesson 7 LVG model & X CO Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
Revelation of a vast amount of warm and diffuse gas and high ionization rate in the Central Molecular Zone of the Galactic center by the Infrared Spectrum.
Spectroscopy of H 3 + and CO toward the Galactic center Takeshi Oka, Christopher P. Morong, Department of Astronomy And Astrophysics and Department of.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Observations of H 3 + The Initiator of Interstellar Chemistry Benjamin McCall Oka Ion Factory University of Chicago Thomas Geballe Gemini Observatory (HI)
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
EXPANDING DIFFUSE MOLECULAR GAS IN THE CENTRAL MOLECULAR ZONE OF THE GALACTIC CENTER PROBED BY H th International Symposium on Molecular Spectroscopy.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Further studies of λ Diffuse Interstellar Band Takeshi Oka, Lew M. Hobbs, Daniel E. Welty, Donald G. York Department of Astronomy and Astrophysics,
The anomalous DIBs in the spectrum of Herschel 36 II. Analysis of radiatively excited CH +, CH, and diffuse interstellar bands Takeshi Oka, Daniel E. Welty,
The anomalous DIBs in the spectrum of Herschel 36 II. Analysis of radiatively excited CH +, CH, and diffuse interstellar bands Takeshi Oka, Daniel E. Welty,
Warm, Dense Gas Near the Massive Protostar AFGL 2136 IRS 1 as Revealed by Absorption from the ν 1, ν 2, and ν 3 Bands of Water Nick Indriolo 1, David Neufeld.
Analysis of Anomalous DIBs in the Spectrum of Herschel 36 Takeshi Oka, Daniel E. Welty, Sean Johnson, Donald G. York, Julie Dahlstrom, and Lew Hobbs Department.
Analysis of OH +, H 2 O +, and H 3 + in a Diffuse Molecular Cloud Toward W51 Nick Indriolo 1, David Neufeld 1, Maryvonne Gerin 2, & Tom Geballe 3 1 – Johns.
Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory Joel R. Schmitz and David A. Dolson Department of Chemistry.
Observation Of Nuclear Spin Selection Rules In Supersonically Expanding Plasmas Containing H 3 + Brian Tom, Michael Wiczer, Andrew Mills, Kyle Crabtree,
Central Molecular Zone (CMZ): the Treasure House of H 3 + Takeshi Oka Thomas R. Geballe Gemini Observatory Miwa Goto Max Planck Institute for Astronomy.
A Search for Interstellar H2DO+
Introductory remarks Takeshi Oka
AND HIGH H2 IONIZATION RATE
MODIFICATIONS OF THE RELATION BETWEEN
Tomoharu Oka et al ApJS doi: / /201/2/14 Information:
CH+ spectrum and diffuse interstellar bands
Nick Indriolo1, Thomas R. Geballe2, Takeshi Oka3, and Benjamin J
CH+ and DIBs toward Herschel 36
Observation of H3+ in the Diffuse Interstellar Medium
LARGE PICTURE OF THE GALACTIC CENTER STUDIED BY H3+:
Investigating the Cosmic-Ray Ionization Rate in the Galactic Interstellar Medium through Observations of H3+ Nick Indriolo,1 Ben McCall,1 Tom Geballe,2.
Morphology of the Galactic center from the H3+ spectrum:
Thermalization of interstellar CO
Presentation transcript:

Linear Analysis of Infrared CO Spectra Takeshi Oka Department of Astronomy and Astrophysics and Department of Chemistry, The Enrico Fermi Institute, University of Chicago Han Xiao Department of Statistics, University of Chicago Tom Geballe Gemini Observatory Chris Morong Department of Chemistry, University of Chicago June 24, Columbus Symposium Tomoharu Oka, Keio University

H 3 + and CO are complementary n(CO)  n H N(C) → M n(H 3 + )  n H 0 N(H 3 + ) → L · ζ CO high n low T J = 0, 1, 2, 3 H 3 + low n high T (3,3), (2,2) N(CO) ~ cm -2 v = 2←0 μ 2-0 = Debye N(H 3 + ) ~ cm -2 v = 1←0 μ 1-0 = Debye

H 3 + and CO Discriminate Clouds Oka et al. ApJ 632, 882 (2005)Geballe & Oka ApJ 709, L70 (2010) Expanding molecular ring Kaifu, Kato, Iguchi, Nature (1972) Scoville, ApJ, 175, L127 (1973) α

Disagreement between IR and Radio

Optical Depth: Central in Linear Analysis 13 C, 18 O, 17 O Non-linearity arises in two ways 1)Line-formation W λ → N(CO) 2)Thermalization Radiation trapping

Sobolev High Velocity Gradient Method V. V. Sobolev Moving Envelopes of Stars (1947) G. B. Rybicki Escape Probability Methods (1984) Escape probability

Collisional and radiative processes Detailed balance Steady State Green & Chapman, ApJS 37, 169 (1978) D. R. Flower, J. Phys. B: At. Mol. Opt. Phys. 34, 2731 (2001) Wernli, Valiron, Faure, Wiesenfeld, Jankowski, Swalewicz, A&A, 446, 367 (2006) Schöier, van der Tak, van Dishoeck, Black, A&A 432, 369 (2005) LAMDA Yang, Stancil, Balakrishnan, Forrey, J. Chem. Phys. 124, (2006) CO J’ CO J H2H2H2H2

Polynomial fitting is dangerous Cubic spline FMM n(1)/n(0)

Some combinations are more useful n(1)/n(0)n(3)/n(2) Spiral arms Galactic C.