Discrete Mathematics Math 6A Homework 8 Solution
3.2-2 a)128 b) 7 c) 2 d) a)a0=2, a1=3, a2=5, a3=9 b)a0=1, a1=4, a2=27, a3=256 c)a0=0, a1=0, a2=1, a3=1 d)a0=0, a1=1, a2=2, a3= a) =20 b)1-2+4=8+16=11 c) = 10*3 = 30 d)(2-1)+(4-2)+(8-4)+...+( ) = 511
a) =10 b){(3^9-1)/(3-2)} – {(2^9-1)/(2-1)} = 9330 c)(2*(3^9)-2)/(3-1) – (3*(2^9)-3)/(2-1) = d)2^9 – 2^0 = a)200*201/2 – 99*100/2 = ^2*201^2/4 – 98^2*99^2/4 = 380,477,799
a)countable: 1 > -1, 2 > -2, 3 > b)countable: 1 >0, 2 >2, 3 > -2, 4 >4,... c)not countable d)countable Yes, not countable p(n)=3+3* *5^n = (5^n+1 -1)/4 p(0) = 3 p(k+1) = 3+3* *5^k + 3*5^k+1 = (5^k+2 -1)/4 p(k+1) = 3*(5^k+1-1)/4 + 3*5^k+1 = (5^k+2 -1)/ p(n)=2-2*7 + 2*7^ (-7)^n = (1-(-7)^n+1)/4 p(0) = 2 p(k+1) = 2-2*7 + 2*7^ (-7)^k + 2(-7)^k+1 = (1-(-7)^k+2)/4 p(k+1) = (1-(-7)^k+1)/4 + 2*(-7)^k+1 = (1-(-7)^k+2)/ p(n) = ½ + 4/1 + 1/ ½^n = 2^n-1/2^n p(1)=1/2 p(k+1)= 2^(k+1)-1/2^(k+1) p(k+1) = 2^k-1/2^k – ½^(k+1)= 2^(k+1)-1/2^(k+1)
3.3-6 p(n) = 1/1*2 + 1/2*3 +...*1/n*(n+1) = n/n+1 p(1)=1/2 p(k+1) = k+1/k+2 p(k+1) = k/k+1 + 1/(k+1)(k+2) = k+1/k n=5 2^5 = 32 > 5^2=25 Assume that 2^k > k^2 and want to derive the statement that 2^(k+1) > (k+1)^2 (k+1)^2 = k^2 +2k + 1 < k^2 +2k + k = k^2 +3k < k^2 +k^2. Thus (k+1)^2 = 2k^2 < 2*2^k p(n)=1*2 + 2* n(n+1) = n(n+1)(n+2)/3 p(1) = 2=2 p(k+1) = {1*2 + 2* k(k+1)}+(k+1)(k+2) = (k+1)(k+2)(k+3)/3 p(k+1) = k(k+1)(k+2)/3 + (k+1)(k+2) = (k+1)(k+2)(k+3)/3
(x y) z = (x z) (y z) p(n) = (A1 A2 ... An) B= (A1 B) (A2 B) ... (An B) p(1) = (A1 B) p(n+1) = (A1 A2 ... An An+1) B = {(A1 B) (A2 B) ... (An B)} (An+1 B) = (A1 B) (A2 B) ... (An B) (An+1 B)