Preventing Disentanglement by Symmetry Manipulations G. Gordon, A. Kofman, G. Kurizki Weizmann Institute of Science, Rehovot 76100, Israel Sponsors: EU,

Slides:



Advertisements
Similar presentations
1 Trey Porto Joint Quantum Institute NIST / University of Maryland DAMOP 2008 Controlled interaction between pairs of atoms in a double-well optical lattice.
Advertisements

Quantum Computing via Local Control Einat Frishman Shlomo Sklarz David Tannor.
High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Superconducting qubits
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Thanks to the Organizers for bringing us to Krynica, near the Polish-Slovak border, the site of archeo- and anthropo- pseudo-logical investigations of.
Decoherence Versus Disentanglement for two qubits in a squeezed bath. Facultad de Física Pontificia Universidad Católica de Chile. M.Orszag ; M.Hernandez.
Quantum random walks Andre Kochanke Max-Planck-Institute of Quantum Optics 7/27/2011.
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
Deducing Anharmonic Coupling Matrix Elements from Picosecond Time- Resolved Photoelectron Spectra Katharine Reid (Julia Davies, Alistair Green) School.
Stimulated Raman Adiabatic Passage into continuum
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Suppressing decoherence and heating with quantum bang-bang controls David Vitali and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
1 Localized surface plasmon resonance of optically coupled metal particles Takumi Sannomiya*, Christian Hafner**, Janos Vörös* * Laboratory of Biosensors.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Single-ion Quantum Lock-in Amplifier
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Hybrid quantum decoupling and error correction Leonid Pryadko University of California, Riverside Pinaki Sengupta(LANL) Greg Quiroz (USC) Sasha Korotkov.
Dynamical decoupling in solids
Strongly correlated phenomena in cavity QED Fernando G.S.L. Brandão 1,2 Michael J. Hartmann 1,2 Martin B. Plenio 1,2 1 Institute for Mathematical Sciences,
Quantum Spin Glasses & Spin Liquids.  QUANTUM RELAXATION Ising Magnet in a Transverse Magnetic Field (1) Aging in the Spin Glass (2) Erasing Memories.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Multi-Partite Squeezing and SU (1,1) Symmetry Zahra Shaterzadeh Yazdi Institute for Quantum Information Science, University of Calgary with Peter S. Turner.
Global control, perpetual coupling and the like Easing the experimental burden Simon Benjamin, Oxford. EPSRC. DTI, Royal Soc.
Quantum entanglement and Quantum state Tomography Zoltán Scherübl Nanophysics Seminar – Lecture BUTE.
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
Constraints on Dissipative Processes Allan Solomon 1,2 and Sonia Schirmer 3 1 Dept. of Physics & Astronomy. Open University, UK
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Quantum Optics II – Cozumel, Dec. 6-9, 2004
STUDY ON THE VIBRATIONAL DYNAMICS OF PHENOL AND PHENOL-WATER COMPLEX BY PICOSECOND TIME- RESOLVED IR-UV PUMP-PROBE SPECTROSCOPY Yasunori Miyazaki, Yoshiya.
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Atomic entangled states with BEC SFB Coherent Control €U TMR A. Sorensen L. M. Duan P. Zoller J.I.C. (Nature, February 2001) KIAS, November 2001.
Goren Gordon, Gershon Kurizki Weizmann Institute of Science, Israel Daniel Lidar University of Southern California, USA QEC07 USC Los Angeles, USA Dec.
Entangling Quantum Virtual Subsytems Paolo Zanardi ISI Foundation February Universita’di Milano.
Hybrid quantum error prevention, reduction, and correction methods Daniel Lidar University of Toronto Quantum Information & Quantum Control Conference.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Operated by Los Alamos National Security, LLC for NNSA Dynamics of modulated beams Operated by Los Alamos National Security, LLC, for the U.S. Department.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland Open quantum systems: Decoherence and Control ITAMP Nov Coherent Control.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Entanglement Detection Gühne & Tóth, Physics Reports 474 (2009). Superradiance: … Theory of Collective Spontaneous Emission Gross & Haroche, Physics Reports.
International Scientific Spring 2016
Chao Zhuang, Samansa Maneshi, XiaoXian Liu, Ardavan Darabi, Chris Paul, Luciano Cruz, and Aephraim Steinberg Department of Physics, Center for Quantum.
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Improving Measurement Precision with Weak Measurements
Scheme for Entangling Micromeccanical Resonators
Decoherence at optimal point: beyond the Bloch equations
Spectroscopy of ultracold bosons by periodic lattice modulations
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
M. Povarnitsyn, K. Khishchenko, P. Levashov
Using Randomness for Coherent Quantum Control
Quantum phase magnification
Presentation transcript:

Preventing Disentanglement by Symmetry Manipulations G. Gordon, A. Kofman, G. Kurizki Weizmann Institute of Science, Rehovot 76100, Israel Sponsors: EU, ISF

Outline Decoherence mechanisms General formalism Modulation schemes Numerical example Conclusions

Decoherence Scenarios: Single Particle Ion trap Cold atom in (imperfect) optical lattice Ion in cavity Kreuter et al. PRL (2004) Keller et al. Nature 431, 1075 (2004) Häffner et al. Nature (2005) Jaksch et al. PRL 82, 1975 (1999) Mandel et al. Nature 425, 937 (2003)

Single Particle Solution  t)=e -J(t)  (0) J(t)=2  s d  G(  )F t (  +  a ) Reservoir coupling spectrum Spectral intensity of modulation G(  ) !  (  )|  (  )| 2 F t (  )=|  t (  )| 2 F(t)=| h  (0)|  (t) i | 2 =e -2 < J(t) Fidelity: A. G. Kofman and G. Kurizki, Nature 405, 546 (2000), PRL 87, (2001), PRL 93,130406(2004) Impulsive phase modulation (Caused by Repetitive Weak Pulses)  t)=e i[t/  ]   ¿  J=2  G(  a +  /  ) G(  ) Ft()Ft()  Dynamic decoupling. Viola & Lloyd PRA (1998) Shiokawa & Lidar PRA (R) (2004) Vitali & Tombesi PRA (2001)  t) i =  k  k (t)|k i |g i +  (t)|vac i |e i

Decoherence Scenarios: Many Particles Ions’ vibrations in trap Ions in cavity “Sudden Death”, Yu & Eberly PRL (2004) Coupled atoms’ vibrations in imperfect optical lattice Lisi & Mølmer, PRA 66, (2002); Sherson & Mølmer, PRA 71, (2005)

|2 i |1 i |g i |2 i |1 i |g i (a) (b) Particles: – Ions –Cold atoms Bath: – Cavity modes –Vibrational modes Bath-particle coupling Modulations: – AC Stark Shifts : RF fields, Lasers –Coupling modulation: On-off switch The System  a,1 (t)  b,2 (t)  k,a,1  k,b,1 |k i

The Multipartite Wavefunction |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |2 i |1 i |g i |  (t) i =  k  k (t)|k i­ |g i a |g i b +  a,1 (t)|vac i­ |1 i a |g i b +  a,2 (t) |vac i­ |2 i a |g i b +  b,1 (t) |vac i­ |g i a |1 i b +  b,2 (t) |vac i­ |g i a |2 i b a b

 t)=e -J(t)  (0) J jj',nn' (t) = s 0 t dt' s 0 t' dt''  jj',nn' (t'-t'')K jj',nn' (t',t'')e i  j,n t'-i  j',n' t''  jj',nn' (t)= s d  G jj',nn' (  )e -i  t G jj',nn‘  ~ -2  k  k,j,n  * k,j',n'  k ) Bath MatrixModulation Matrix K jj',nn' (t,t')=  * j,n (t)  j',n' (t')  j,n (t)=e i s 0  d   j,n (  ) Decoherence Matrix The Multipartite Solution Gordon, Kurizki, Kofman J. Opt. B , (2005); Opt. Comm. (in press)

Decoherence Matrix Elements Diagonal elements: Individual particle decoherence J jj,nn (t)=2  s d  G jj,nn (  )F t,j,n (  +  j,n ) Off-diagonal elements: Cross-decoherence J jj',nn' (t) = s 0 t dt' s 0 t' dt''  jj',nn' (t'-t'')  * j,n (t`)  j`n` (t``)e i  j,n t'-i  j',n' t''

F(t)=| h  (0)|  (t) i | 2 Definitions: Mixing parameters: c j,n (t)=  j,n (t)/  1,1 (t) Decay parameter: A(t)=  1,1 (t)(  j,n |c j,n (t)| 2 ) 1/2 F(t)=F p (t)F e (t) F p (t)=|A(t)| 2 F e (t)=|  1,1 (0)| 2 |  j=1 2  n=1 2 c * j,n (0)c j,n (t)| 2  j=1 2  n=1 2 |c j,n (t)| 2 Population Preservation Entanglement Preservation The Fidelity F(t) of single particle

Population preservation: probability of having a particle in an excited state |  (0) i =1/√2(|g i a |1 i b +|1 i a |g i b )  a (t)=1/√2 e -J a (t)  b (t)=1/√2 e -J b (t) F p (t)=(e -2J a (t) +e -2J b (t) )/2 F e (t)=1/2+e -  J(t) /(1+e -2  J(t) )  J(t) = J b (t)-J a (t) No Cross-decoherence, different decoherence rates: Initial entangled state: Entanglement preservation: Given that a particle is in an excited state, a measure of entanglement preservation compared to initial state. The Fidelity: Example

Modulation Schemes Tasks No Modulation N different independent particlesN identical independent particles Decoherence Free Subspace N decoherence free qubits Viola et al. PRL 85, 3520 (2000); Wu & Lidar, PRL 88, (2002),Global Modulation

Two three-level particles Coupling: Gaussian, G jj`,nn` (  ) / exp(-  2 /  j,n 2 )exp(-  2 /  j`,n` 2 ) –Different for each particle –Cross-decoherence Impulsive phase modulation  j,n (t)=e i[t/  j,n ]  j,n –Global Scheme: Identical modulation to all particles –Local Scheme: Addressability, specific modulations Initial Entangled State: |  (0) i =1/√2(|- i a |g i b +|g i a |- i b ) |- i j =1/√2(|1 i j -|2 i j ) ”dark state” Numerical Example: Setup

J(t) Global Modulation General Decoherence Matrix Cross-coupling particles, Different coupling to bath Population loss Entanglement loss Condition :  j,n (t)=  (t) 8 j,n J jj`,nn` (t)=2  s d  G jj`,nn` (  )F t (  +  j,n )  0

Decoherence Matrix Decoherence Matrix Elements Fidelity FFpFeFFpFe Numerical Example: Global Modulation  No Symmetry

Diagonal Decoherence Matrix Effectively: N different independent particles Separated particles, Coupled to different baths Population loss Entanglement loss J(t) Task 1: Eliminating cross-decoherence J jj',nn' (t) = s 0 t dt' s 0 t' dt''  jj',nn' (t'-t'')  * j,n (t`)  j`n` (t``)e i  j,n t'-i  j',n' t'' =0 8 j  j`, n  n` Condition :  j,n (t)  j`,n` (t) 8 j,j`,n,n`

Fidelity Decoherence Matrix Elements Decoherence Matrix FFpFeFFpFe Numerical Example: Local modulations  Eliminate cross-decoherence

Decoherence Matrix / Identity Matrix Imposes permutation symmetry Effectively: N independent identical particles Separated particles, identical coupling to baths Reduce problem to single particle decoherence control Population loss Entanglement preservation J(t) Task 2: Equating decoherence rates Decaying Entangled state |  (t) i =e -J(t) |  (0) i Condition :  j,n (t)  j`,n` (t) 8 j,j`,n,n` J jj,nn (t)=2  s d  G jj,nn (  )F t,j,n (  +  j,n ) =J(t) G(  ) Ft()Ft() Ft()Ft() =

Fidelity Decoherence Matrix Elements Decoherence Matrix FFpFeFFpFe Numerical Example: Equating decoherence rates

J(t) Task 3: Equating decoherence and cross-decoherence All Decoherence Matrix Elements Equal Imposes permutation symmetry Cross-coupled particles, identical coupling to the same bath Anti-symmetric state = Decoherence-Free Subspace Condition :  j,n (t) ¼  j`,n` (t) 8 j,j`,n,n` J jj`,nn` (t)=J(t) Very difficult

J(t) For N three-level particles Equating intraparticle decoherence and cross-decoherence of each particle Eliminating interparticle cross-decoherence Anti-symmetric state of each particle |- i j =1/√2(|1 i j -|2 i j ) = Decoherence Free Subspace N decoherence free qubits Optimal modulation scheme Condition :  j,n (t) ¼  j`,n` (t) 8 j=j`,n,n`  j,n (t)  j`,n` (t) 8 j  j`,n,n’

Fidelity Decoherence Matrix Elements Decoherence Matrix FFpFeFFpFe Numerical Example: Optimal scheme |  (0) i =1/√2(|- i a |g i b +|g i a |- i b ) |- i j =1/√2(|1 i 2 -|2 i j )

Numerical Example: Summary

Suggested Experimental Setup: Multiple 40 Ca + Ions in Cavity Experimental parameters: Finesse ¼ D 5/2 a = 729 nm Cavity mode width  ¼ 12 GHz Single particle: No modulation: Lifetime = s With modulation:Lifetime ¼ 1.4 s Required impulsive phase modulation rate ~  Multiple ions in cavity: Position in cavity:  a -  b ¼ 15% Three level system: |g i = 4 2 S 1/2 |1 i = 3 2 D 3/2 |2 i = 3 2 D 5/2  1 /  2 = Kreuter et al. PRL (2004);Barton et al. PRA (2000) Single ion in cavity: Two ions in each cavity + Local modulations 1/√2(|g i a |1 i b -|1 i a |g i b ) = DFS

Local modulations can –Impose permutation symmetry –Introduce a Decoherence-Free Subspace –Reduce the task of multipartite disentanglement to that of a single relaxing particle Universal dynamical decoherence control formalism gives the modulations’ conditions for each task Optimal modulation scheme for N three-level particles –Can impose many-particle DFS Conclusions Thank You !!!

Modulation Criteria Global modulation Elimination of cross-decoherence Creation of DFS G(  ) F t,j,n (  )=F t,j`,n` (  ) G(  ) F t,j,n (  ) G(  ) F t,j,n (  ) F t,j`,n` (  )  j,n (t)=  j`,n` (t)  j,n (t)  j`,n` (t)  j,n (t) ¼  j`,n` (t)

Multilevel Cross-Decoherence No modulation Global modulation Creation of DFS G(  ) F t,j,n (  +  j ) G(  )  j,n (t)=   j,n (t)  j`,n` (t)  j,n (t) ¼  j`,n` (t) F t,j`,n (  +  j` ) G(  ) F t,j,n (  +  j ) F t,j`,n (  +  j` ) F t,j,n (  +  j )F t,j`,n (  +  j` )

Quasi-periodic Modulation  j,n (t)=  l  l e -i l t G(  ) F t,j,n (  ) l l+1 l+2 l+3 l-1 l-2 l-3 J(t)=2  l  l G(  + l )

General Bath Formalism J jj',nn' (t) = s 0 t dt' s 0 t' dt''  jj',nn' (t'-t'')K jj',nn' (t',t'')e i  j,n t'-i  j',n' t''  jj',nn' (t)= s d  G jj',nn' (  )e -i  t G jj',nn‘  ~ -2  k  k,j,n  * k,j',n'  k ) Bath Matrix Decoherence Matrix The Same Bath:  k,j,n =  k 8 j,n Separate Baths: (independent particles)  k,j,n  k,j`,n` =0 8 j  j`,n,n`,k Particle j coupled to modes {k j } Particle j` coupled to modes {k j` }  {k j } Å {k j` }= ;

"Dark State” |0 i |1 i |2 i 11  V(t) No Cross-Decoherence, levels coupled to separate baths |0 i |1 i |2 i 11   12 Exploiting Cross-Decoherence to create “dark state”