Microscopic diagonal entropy, heat, and laws of thermodynamics Anatoli Polkovnikov, Boston University AFOSR Roman Barankov – BU Vladimir Gritsev – Harvard.

Slides:



Advertisements
Similar presentations
The Kinetic Theory of Gases
Advertisements

Statistical mechanics
Ch2. Elements of Ensemble Theory
Thermodynamics versus Statistical Mechanics
Hamiltonian Formalism
Entropy in the Quantum World Panagiotis Aleiferis EECS 598, Fall 2001.
Emergence of Quantum Mechanics from Classical Statistics.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Quantum dynamics of closed systems close to equilibrium Anatoli Polkovnikov, Boston University AFOSR R. Barankov, C. De Grandi – BU V. Gritsev – Fribourg,
Quantum dynamics in low dimensional systems. Anatoli Polkovnikov, Boston University AFOSR Superconductivity and Superfluidity in Finite Systems, U of Wisconsin,
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Energy. Simple System Statistical mechanics applies to large sets of particles. Assume a system with a countable set of states.  Probability p n  Energy.
Phase Diagram of One-Dimensional Bosons in Disordered Potential Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Yariv Kafri.
Quantum Refrigeration & Absolute Zero Temperature Yair Rezek Tova Feldmann Ronnie Kosloff.
Femtochemistry: A theoretical overview Mario Barbatti III – Adiabatic approximation and non-adiabatic corrections This lecture.
Symmetry. Phase Continuity Phase density is conserved by Liouville’s theorem.  Distribution function D  Points as ensemble members Consider as a fluid.
From adiabatic dynamics to general questions of thermodynamics. Anatoli Polkovnikov, Boston University AFOSR R. Barankov, C. De Grandi – BU V. Gritsev.
EEE539 Solid State Electronics 5. Phonons – Thermal Properties Issues that are addressed in this chapter include:  Phonon heat capacity with explanation.
Lecture 6 The dielectric response functions. Superposition principle.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Slow dynamics in gapless low-dimensional systems
Quantum dynamics in low dimensional isolated systems. Anatoli Polkovnikov, Boston University AFOSR Condensed Matter Colloquium, 04/03/2008 Roman Barankov.
Quantum fermions from classical statistics. quantum mechanics can be described by classical statistics !
Cold Atoms and Out of Equilibrium Quantum Dynamics Anatoli Polkovnikov, Boston University AFOSR Vladimir Gritsev – Harvard Ehud Altman -Weizmann Eugene.
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Lecture 1 Introduction to statistical mechanics.
1 A. Derivation of GL equations macroscopic magnetic field Several standard definitions: -Field of “external” currents -magnetization -free energy II.
Quantum dynamics in low dimensional isolated systems. Anatoli Polkovnikov, Boston University AFOSR Joint Atomic Physics Colloquium, 02/27/2008 Roman Barankov.
Microscopic diagonal entropy, heat, and laws of thermodynamics Anatoli Polkovnikov, Boston University AFOSR R. Barankov, C. De Grandi – BU V. Gritsev –
Using dynamics for optical lattice simulations. Anatoli Polkovnikov, Boston University AFOSR Ehud Altman -Weizmann Eugene Demler – Harvard Vladimir Gritsev.
Universal dynamics near quantum critical points. Anatoli Polkovnikov, Boston University Bah bar Meeting. Boston, 04/03/2010 Roman Barankov BU Christian.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Universal adiabatic dynamics across a quantum critical point Anatoli Polkovnikov, Boston University.
Cold Atoms and Out of Equilibrium Quantum Dynamics Anatoli Polkovnikov, Boston University AFOSR Vladimir Gritsev – Harvard Ehud Altman -Weizmann Eugene.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Nonequilibrium dynamics near quantum phase transitions Anatoli Polkovnikov, Boston University Princeton University. Condensed Matter Seminar, 03/29/2010.
Multifractal superconductivity Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Emilio Cuevas (University of Murcia)
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov (BU and Harvard) (Harvard) Ehud Altman, (Weizmann and Harvard) Eugene Demler,
Slow dynamics in gapless low-dimensional systems Anatoli Polkovnikov, Boston University AFOSR Vladimir Gritsev – Harvard Ehud Altman -Weizmann Eugene Demler.
Nonadiabatic dynamics in closed Hamiltonian systems. Anatoli Polkovnikov, Boston University University of Utah, Condensed Matter Seminar, 10/27/2009 R.
Introduction to (Statistical) Thermodynamics
MSEG 803 Equilibria in Material Systems 6: Phase space and microstates Prof. Juejun (JJ) Hu
Chang-Kui Duan, Institute of Modern Physics, CUPT 1 Harmonic oscillator and coherent states Reading materials: 1.Chapter 7 of Shankar’s PQM.
The Laws of Thermodynamics
12/01/2014PHY 711 Fall Lecture 391 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 39 1.Brief introduction.
1 CE 530 Molecular Simulation Lecture 6 David A. Kofke Department of Chemical Engineering SUNY Buffalo
Lecture 3. Combinatorics, Probability and Multiplicity (Ch. 2 )
Serge Andrianov Theory of Symplectic Formalism for Spin-Orbit Tracking Institute for Nuclear Physics Forschungszentrum Juelich Saint-Petersburg State University,
Entropy and temperature Fundamental assumption : an isolated system (N, V and U and all external parameters constant) is equally likely to be in any of.
Supplement – Statistical Thermodynamics
Thermalization of isolated quantum systems (+ comments on black holes) M. Kruczenski Purdue University Aspen 2014 Based on arXiv: arXiv:
Ch 22 pp Lecture 2 – The Boltzmann distribution.
Monatomic Crystals.
Lecture 3. Full statistical description of the system of N particles is given by the many particle distribution function: in the phase space of 6N dimensions.
Statistical Mechanics and Multi-Scale Simulation Methods ChBE
Chapter 3 Postulates of Quantum Mechanics. Questions QM answers 1) How is the state of a system described mathematically? (In CM – via generalized coordinates.
Phase Space Representation of Quantum Dynamics Anatoli Polkovnikov, Boston University Seminar, U. of Fribourg 07/08/2010.
Lecture from Quantum Mechanics. Marek Zrałek Field Theory and Particle Physics Department. Silesian University Lecture 6.
Review for Exam 2 The Schrodinger Eqn.
ENZO ZANCHINI Università di Bologna AVAILABILITY FUNCTIONS AND THERMODYNAMIC EFFICIENCY 2. Conditions for mutual.
STATISTICAL MECHANICS PD Dr. Christian Holm PART 5-6 Some special topics, Thermal Radiation, and Plank distribution.
Einstein’s coefficients represent a phenomenological description of the matter-radiation interaction Prescription for computing the values of the A and.
Quantum optics Eyal Freiberg.
Open quantum systems.
Quantum One.
Elements of Quantum Mechanics
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Chapter 1: Statistical Basis of Thermodynamics
Lecture 1 Introduction to statistical mechanics.
Total Energy is Conserved.
Presentation transcript:

Microscopic diagonal entropy, heat, and laws of thermodynamics Anatoli Polkovnikov, Boston University AFOSR Roman Barankov – BU Vladimir Gritsev – Harvard Vadim Oganesyan - Yale UMASS, Boston, 09/24/2008

Plan of the talk 1.Thermalization in isolated systems. 2.Connection of quantum and thermodynamic adiabatic theorems: three regimes of adiabaticity. 3.Microscopic expression for the heat and the diagonal entropy. Laws of thermodynamics and reversibility. Numerical example. 4.Expansion of quantum dynamics around the classical limit.

Cold atoms: example of isolated systems with tunable interactions. M. Greiner et. al. 2002

Ergodic Hypothesis: In sufficiently complicated systems (with stationary external parameters) time average is equivalent to ensemble average.

In the continuum this system is equivalent to an integrable KdV equation. The solution splits into non-thermalizing solitons Kruskal and Zabusky (1965 ).

Qauntum Newton Craddle. (collisions in 1D interecating Bose gas – Lieb-Liniger model) T. Kinoshita, T. R. Wenger and D. S. Weiss, Nature 440, 900 – 903 (2006) No thermalization in1D. Fast thermalization in 3D. Quantum analogue of the Fermi-Pasta- Ulam problem.

Thermalization in Quantum systems. Consider the time average of a certain observable A in an isolated system after a quench. Eignestate thermalization hypothesis (M. Rigol, V. Dunjko & M. Olshanii, Nature 452, 854, 2008.): A n,n ~ const (n) so there is no dependence on density matrix as long as it is sufficiently narrow. Necessary assumption: Information about equilibrium is fully contained in diagonal elements of the density matrix.

This is true for all thermodynamic observables: energy, pressure, magnetization, …. (pick your favorite). They all are linear in . This is not true about von Neumann entropy! Off-diagonal elements do not average to zero. The usual way around: coarse-grain density matrix (remove by hand fast oscillating off-diagonal elements of . Problem: not a unique procedure, explicitly violates time reversibility and Hamiltonian dynamics.

Von Neumann entropy: always conserved in time (in isolated systems). More generally it is invariant under arbitrary unitary transfomations Thermodynamics: entropy is conserved only for adiabatic (slow, reversible) processes. Otherwise it increases. Quantum mechanics: for adiabatic processes there are no transitions between energy levels: If these two adiabatic theorems are related then the entropy should only depend on  nn.

Thermodynamic adiabatic theorem. General expectation: In a cyclic adiabatic process the energy of the system does not change: no work done on the system, no heating, and no entropy is generated. - is the rate of change of external parameter.

Adiabatic theorem in quantum mechanics Landau Zener process: In the limit  0 transitions between different energy levels are suppressed. This, for example, implies reversibility (no work done) in a cyclic process.

Adiabatic theorem in QM suggests adiabatic theorem in thermodynamics: Breakdown of Taylor expansion in low dimensions, especially near singularities (phase transitions). 1.Transitions are unavoidable in large gapless systems. 2.Phase space available for these transitions decreases with the rate  Hence expect Low dimensions: high density of low energy states, breakdown of mean-field approaches in equilibrium

Three regimes of response to the slow ramp: A.P. and V.Gritsev, Nature Physics 4, 477 (2008) A.Mean field (analytic) – high dimensions: B.Non-analytic – low dimensions C.Non-adiabatic – low dimensions, bosonic excitations In all three situations (even C) quantum and thermodynamic adiabatic theorem are smoothly connected. The adiabatic theorem in thermodynamics does follow from the adiabatic theorem in quantum mechanics.

Numerical verification (bosons on a lattice). Use the fact that quantum fluctuations are weak in the SF phase and expand dynamics in the effective Planck’s constant: Nonintegrable model in all spatial dimensions, expect thermalization.

T=0.02 Heat per site

2D, T=0.2 Heat per site

Thermalization at long times (1D).

Connection between two adiabatic theorems allows us to define heat. Consider an arbitrary dynamical process and work in the instantaneous energy basis (adiabatic basis). Adiabatic energy is the function of the state.Adiabatic energy is the function of the state. Heat is the function of the process.Heat is the function of the process. Heat vanishes in the adiabatic limit. Now this is not the postulate, this is a consequence of the Hamiltonian dynamics!Heat vanishes in the adiabatic limit. Now this is not the postulate, this is a consequence of the Hamiltonian dynamics!

Isolated systems. Initial stationary state. Unitarity of the evolution gives Transition probabilities p m->n are non-negative numbers satisfying In general there is no detailed balance even for cyclic processes (but within the Fremi-Golden rule there is).

yields If there is a detailed balance then Heat is non-negative for cyclic processes if the initial density matrix is passive. Second law of thermodynamics in Thompson (Kelvin’s form). The statement is also true without the detailed balance but the proof is more complicated (Thirring, Quantum Mathematical Physics, Springer 1999).

What about entropy? Entropy should be related to heat (energy), which knows only about  nn.Entropy should be related to heat (energy), which knows only about  nn. Entropy does not change in the adiabatic limit, so it should depend only on  nn.Entropy does not change in the adiabatic limit, so it should depend only on  nn. Ergodic hypothesis requires that all thermodynamic quantities (including entropy) should depend only on  nn.Ergodic hypothesis requires that all thermodynamic quantities (including entropy) should depend only on  nn. In thermal equilibrium the statistical entropy should coincide with the von Neumann’s entropy:In thermal equilibrium the statistical entropy should coincide with the von Neumann’s entropy: Simple resolution: diagonal entropy the sum is taken in the instantaneous energy basis.

Properties of d-entropy. Jensen’s inequality: Therefore if the initial density matrix is stationary (diagonal) then Now assume that the initial state is thermal equilibrium Let us consider an infinitesimal change of the system and compute energy and entropy change.

Recover the first law of thermodynamics. If stands for the volume the we find

Classical systems. probability to occupy an orbit with energy E. Instead of energy levels we have orbits. describes the motion on this orbits. Classical d-entropy The entropy “knows” only about conserved quantities, everything else is irrelevant for thermodynamics! S d satisfies laws of thermodynamics, unlike the usually defined

Example Cartoon BCS model: Mapping to spin model (Anderson, 1958) In the thermodynamic limit this model has a transition to superconductor (XY-ferromagnet) at g = 1.

Change g from g 1 to g 2. Work with large N.

Simulations: N=2000

Entropy and reversibility.  g =  g = 10 -5

Expansion of quantum dynamics around classical limit. Classical (saddle point) limit: (i) Newtonian equations for particles, (ii) Gross-Pitaevskii equations for matter waves, (iii) Maxwell equations for classical e/m waves and charged particles, (iv) Bloch equations for classical rotators, etc. Questions: What shall we do with equations of motion? What shall we do with initial conditions? Challenge : How to reconcile exponential complexity of quantum many body systems and power law complexity of classical systems?

Partial answers. Leading order in  : equations of motion do not change. Initial conditions are described by a Wigner “probability’’ distribution: G.S. of a harmonic oscillator: Quantum-classical correspondence: ;

Semiclassical (truncated Wigner approximation): Exact for harmonic theories!Exact for harmonic theories! Not limited to low temperatures and to 1D!Not limited to low temperatures and to 1D! Asymptotically exact at short times.Asymptotically exact at short times.Summary: Expectation value is substituted by the average over the initial conditions.

Beyond the semiclassical approximation. Quantum jump. Each jump carries an extra factor of  2. Recover sign problem = exponential complexity in exact formulation of quantum dynamics.

Example (back to FPU problem). with V. Oganesyan and S. Girvin m = 10,  = 1, = 0.2, L = 100 Choose initial state corresponding to initial displacement at wave vector k = 2  /L (first excited mode). Follow the energy in the first excited mode as a function of time.

Classical simulation

Semiclassical simulation

Similar problem with bosons in an optical lattice. Prepare and release a system of bosons from a single site. Little evidence of thermalization in the classical limit. Strong evidence of thermalization in the quantum and semiclassical limits.

Many-site generalization 60 sites, populate each 10 th site.

Conclusions 1.Adiabatic theorems in quantum mechanics and thermodynamics are directly connected. 2.Diagonal entropy satisfies laws of thermodynamics from microscopics. Heat and entropy change result from the transitions between microscopic energy levels. 3.Maximum entropy state with  nn =const is the natural attractor of the Hamiltonian dynamics. 4.Exact time reversibility results in entropy decrease in time. But this decrease is very fragile and sensitive to tiny perturbations.

Illustration: Sine-Grodon model, β plays the role of  V(t) = 0.1 tanh (0.2 t)