Chiral freedom and the scale of weak interactions.

Slides:



Advertisements
Similar presentations
5th May 2010Fergus Wilson, RAL1 Experimental Particle Physics PHYS6011 Looking for Higgs and SUSY at the LHC or...what can you get for $10,000,000,000.
Advertisements

Higgs physics theory aspects experimental approaches Monika Jurcovicova Department of Nuclear Physics, Comenius University Bratislava H f ~ m f.
The mass of the Higgs boson, the great desert, and asymptotic safety of gravity.
What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Electroweak Symmetry Breaking from D-branes Joshua Erlich College of William & Mary Title U Oregon, May 22, 2007 w/ Chris Carone, Marc Sher, Jong Anly.
Vertex Function of Gluon-Photon Penguin Swee-Ping Chia High Impact Research, University of Malaya Kuala Lumpur, Malaysia
Chiral freedom and the scale of weak interactions.
Spinor Gravity A.Hebecker,C.Wetterich.
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Andreas Crivellin Overview of Flavor Physics with focus on the Minimal Supersymmetric Standard Model and two-Higgs-doublet models Supported by a Marie.
J. Hošek, in “Strong Coupling Gauge Theories in LHC Era”, World Scientific 2011 (arXiv: ) P. Beneš, J. Hošek, A. Smetana, arXiv: A.
Compelling Questions of High Energy Physics? What does the future hold? Persis S. Drell Physics Department Cornell University.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
Introduction to the Standard Model
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
4 th Generation Leptons in Minimal Walking Technicolor Theory Matti Heikinheimo University of Jyväskylä.
Chiral freedom and the scale of weak interactions.
30 August 04Lorenzo Feligioni1 Searches for Techniparticles at DØ Lorenzo Feligioni Boston University for the DØ collaboration.
CUSTODIAL SYMMETRY IN THE STANDARD MODEL AND BEYOND V. Pleitez Instituto de Física Teórica/UNESP Modern Trends in Field Theory João Pessoa ─ Setembro 2006.
Spinor Gravity A.Hebecker,C.Wetterich. Unified Theory of fermions and bosons Fermions fundamental Fermions fundamental Bosons composite Bosons composite.
Chiral freedom and the scale of weak interactions.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
The Higgs boson and its mass. LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12.
DEWSB, quark mass hierarchy, and Fourth Family Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, PRD80(2009)
Introduction to Gauge Higgs unification with a graded Lie algebra Academia Sinica, Taiwan Jubin Park (NTHU)  Collaboration with Prof. We-Fu.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
Center for theoretical Physics at BUE
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
2. Two Higgs Doublets Model
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
The mass of the Higgs boson and the great desert to the Planck scale.
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
Lecture 6 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AA.
X ± -Gauge Boson Production in Simplest Higgs Matthew Bishara University of Rochester Meeting of Division of Particles and Fields August 11, 2011  Simplest.
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
weak decays beta decay ofneutron problem energy and momentum not conserved e n p.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Top Quark Physics At TeVatron and LHC. Overview A Lightning Review of the Standard Model Introducing the Top Quark tt* Pair Production Single Top Production.
The inclusion of fermions – J=1/2 particles
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
DYNAMICAL GENERATION OF FERMION MASSES AND ITS CONSEQUENCES Jiří Hošek Department of Theoretical Physics Nuclear Physics Institute Rez (Prague) Czech Republic.
? composite ? H. Fritzsch LMU Munich.
Higgs boson pair production in new physics models at hadron, lepton, and photon colliders October Daisuke Harada (KEK) in collaboration.
1 Why Does the Standard Model Need the Higgs Boson ? II Augusto Barroso Sesimbra 2007.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Some remarks on Higgs physics The Higgs mechanism Triviality and vacuum stability: Higgs bounds The no-Higgs option: strong WW scattering These are just.
Takaaki Nomura(Saitama univ)
The Higgs – A fundamental particle?
Flavour Physics in and beyond the Standard Model
Classically conformal B-L extended Standard Model
PHYS 5326 – Lecture #19 Wrapping up the Higgs Mechanism
Methods of Experimental Particle Physics
Physics at a Linear Collider
Spontaneous breakdown (SB) of symmetry
Physics beyond the SM in Kaon decays --Theory--
Masses by gauge flavor dynamics (1101
Presentation transcript:

Chiral freedom and the scale of weak interactions

proposal for solution of gauge hierarchy problem model without fundamental scalar model without fundamental scalar non-local interaction in chiral tensor channel non-local interaction in chiral tensor channel no mass terms no mass terms chiral couplings to quarks and leptons chiral couplings to quarks and leptons chiral couplings are asymptotically free chiral couplings are asymptotically free weak scale by dimensional transmutation weak scale by dimensional transmutation

Non-local interaction in chiral tensor channel non – local interaction f : chiral coupling for top and bottom quarks

non-local interactions in chiral tensor channel Lorentz invariant Lorentz invariant Could be generated by exchange of chiral tensor fields – not necessary and not used here Could be generated by exchange of chiral tensor fields – not necessary and not used here Chiral coupling f is dimensionless Chiral coupling f is dimensionless Generalization to chiral couplings for lighter quarks : chiral couplings described by 3x3 matrices, similar to Yukawa couplings in SM Generalization to chiral couplings for lighter quarks : chiral couplings described by 3x3 matrices, similar to Yukawa couplings in SM convenient for graphical representation of chiral vertex ffff

classical dilatation symmetry action has no parameter with dimension mass action has no parameter with dimension mass all couplings are dimensionless all couplings are dimensionless

flavor and CP violation chiral couplings can be made diagonal and real by suitable phases for fermions chiral couplings can be made diagonal and real by suitable phases for fermions Kobayashi – Maskawa Matrix Kobayashi – Maskawa Matrix same flavor violation and CP violation as in standard model same flavor violation and CP violation as in standard model

asymptotic freedom

evolution equations for top coupling fermion anomalous dimension tensor anomalous dimension no vertex correction asymptotic freedom ! Similar observation in abelian model for chiral tensors :Avdeev,Chizhov ‘93

dimensional transmutation Chiral coupling for top grows large at chiral scale Λ ch This sets physical scale : dimensional transmutation - similar to Λ QCD in strong QCD- gauge interaction

spontaneous electroweak symmetry breaking

top – anti-top condensate large chiral coupling for top leads to large effective attractive interaction for top quark large chiral coupling for top leads to large effective attractive interaction for top quark this triggers condensation of top – anti-top pairs this triggers condensation of top – anti-top pairs electroweak symmetry breaking : effective Higgs mechanism provides mass for weak bosons electroweak symmetry breaking : effective Higgs mechanism provides mass for weak bosons effective Yukawa couplings of Higgs give mass to quarks and leptons effective Yukawa couplings of Higgs give mass to quarks and leptons cf : Miranski,Tanabashi, Yamawaki; Bardeen, Hill, Lindner

Induced interactions in scalar channel NJL – type interaction

effective interactions introduce composite field for top- antitop bound state introduce composite field for top- antitop bound state plays role of Higgs field plays role of Higgs field new effective interactions involving the composite scalar φ new effective interactions involving the composite scalar φ effective scalar-top Yukawa coupling effective scalar-top Yukawa coupling

Running effective couplings f h scalar mass term m 2 Ratio between top quark mass and W-boson mass is predictable in this model

phenomenology

chirons possibility of observable bound states in chiral tensor channel possibility of observable bound states in chiral tensor channel irreducible representation for anti-symmetric tensor fields has three components irreducible representation for anti-symmetric tensor fields has three components in presence of mass : little group SO(3) in presence of mass : little group SO(3) with respect to SO(3) : anti-symmetric tensor equivalent to vector with respect to SO(3) : anti-symmetric tensor equivalent to vector massive chiral tensors = massive spin one particles : chirons massive chiral tensors = massive spin one particles : chirons

new resonances at LHC ? production of massive chirons at LHC ? production of massive chirons at LHC ? signal : massive spin one resonances signal : massive spin one resonances rather broad : decay into top quarks rather broad : decay into top quarks relatively small production cross section : small chiral couplings to lowest generation quarks, no direct coupling to gluons relatively small production cross section : small chiral couplings to lowest generation quarks, no direct coupling to gluons perhaps no resonances – just additional effective interactions in chiral tensor channel perhaps no resonances – just additional effective interactions in chiral tensor channel

composite scalars two composite Higgs doublets expected two composite Higgs doublets expected mass GeV mass GeV loop effects ? loop effects ?

conclusions chiral tensor model interactions offer interesting solution of gauge hierarchy problem chiral tensor model interactions offer interesting solution of gauge hierarchy problem phenomenology needs to be explored ! phenomenology needs to be explored ! less couplings than in standard model predictivity ! less couplings than in standard model predictivity !