1 Models for Information Integration: Tuning Local-as-view into Global-as-view Andrea Cali Giuseppe De Giacomo Maurizio Lenzerini.

Slides:



Advertisements
Similar presentations
DIMNet Workshop 7 & 8/10/2002 AutoMed: Automatic generation of Mediator tools for heterogeneous database integration Alex Poulovassilis (Birkbeck College)
Advertisements

Schema Matching and Query Rewriting in Ontology-based Data Integration Zdeňka Linková ICS AS CR Advisor: Július Štuller.
CSE 636 Data Integration Data Integration Approaches.
CHAPTER 3: DESCRIBING DATA SOURCES
Information Integration Using Logical Views Jeffrey D. Ullman.
1 Conjunctions of Queries. 2 Conjunctive Queries A conjunctive query is a single Datalog rule with only non-negated atoms in the body. (Note: No negated.
Data integration Chitta Baral Arizona State University.
1June 7, 2004Ontologies for interoperability1 Ontology-based data integration Maurizio Lenzerini Dipartimento di Informatica e Sistemistica “A. Ruberti”
Answer Set Programming Overview Dr. Rogelio Dávila Pérez Profesor-Investigador División de Posgrado Universidad Autónoma de Guadalajara
1 Global-as-View and Local-as-View for Information Integration CS652 Spring 2004 Presenter: Yihong Ding.
DL-LITE: TRACTABLE DESCRIPTION LOGICS FOR ONTOLOGIES AUTHORS: DIEGO CALVANESE, GIUSEPPE DE GIACOMO, DOMENICO LEMBO, MAURIZIO LENZERINI, RICCARDO ROSATI.
1/03/09 De 89 à 98. 1/03/09 De 89 à 98 1/03/09 De 89 à 98.
A Principled Approach to Data Integration and Reconciliation in Data Warehousing Diego Calvanese Giuseppe De Giacomo Maurizio Lenzerini Daniele Nardi Riccardo.
1 Answering Queries Using Views Alon Y. Halevy Based on Levy et al. PODS ‘95.
BYU 2003BYU Data Extraction Group Combining the Best of Global-as-View and Local-as-View for Data Integration Li Xu Brigham Young University Funded by.
A scalable algorithm for answering queries using views Rachel Pottinger, Alon Levy [2000] Rachel Pottinger and Alon Y. Levy A Scalable Algorithm for Answering.
Data Exchange & Composition of Schema Mappings Phokion G. Kolaitis IBM Almaden Research Center.
Local-as-View Mediators Priya Gangaraju(Class Id:203)
1 CIS607, Fall 2005 Semantic Information Integration Presentation by Paea LePendu Week 8 (Nov. 16)
1 Describing and Utilizing Constraints to Answer Queries in Data-Integration Systems Chen Li Information and Computer Science University of California,
Schema Mapping as Query Discovery Renee J. Miller Laura M. Haas Mauricio A. Hernandez Presented by: Helen Chen.
2005Integration-intro1 Data Integration Systems overview The architecture of a data integration system:  Components and their interaction  Tasks  Concepts.
CSE 636 Data Integration Answering Queries Using Views Overview.
CSE 636 Data Integration Answering Queries Using Views MiniCon Algorithm.
Information Integration Using Logical Views Jeffrey D. Ullman.
Section 2.6 Question 1. Section 2.6 Answer 1 Section 2.6 Question 2.
Distributed Database Management Systems. Reading Textbook: Ch. 4 Textbook: Ch. 4 FarkasCSCE Spring
Schema Mappings Data Exchange & Metadata Management Phokion G. Kolaitis IBM Almaden Research Center joint work with Ronald Fagin Renée J. Miller Lucian.
1 Information Integration Mediators Warehousing Answering Queries Using Views.
Data Integration
Accessing Existing Distributed Science Archives as RDF Models Alasdair J G Gray 1 Norman Gray 2 Iadh Ounis 1 1 Computing Science, University of Glasgow.
09/12/2003 Peer-to-Peer Information Systems – WS 03/04 1 Piazza: Data Management Infrastructure for Semantic Web Applications Alon Y. Halevy, Zachary G.
1 Data integration Most slides are borrowed from Dr. Chen Li, UC Irvine.
CS848: Topics in Databases: Foundations of Query Optimization Topics Covered  Databases  QL  Query containment  More on QL.
Research Topics in Computing Data Modelling for Data Schema Integration 1 March 2005 David George.
Can RDB2RDF Tools Feasible Expose Large Science Archives for Data Integration?  Alasdair J G Gray (University of Glasgow now Manchester)  Norman Gray.
Compiling Mappings to Bridge Applications and Databases Melnik, Adya and Research.
Peer-to-Peer Data Integration Using Distributed Bridges Neal Arthorne B. Eng. Computer Systems (2002) Supervisor: Babak Esfandiari April 12, 2005 Candidate.
Entity Framework Overview. Entity Framework A set of technologies in ADO.NET that support the development of data-oriented software applications A component.
Navigational Plans For Data Integration Marc Friedman Alon Levy Todd Millistein Presented By Avinash Ponnala Avinash Ponnala.
Enabling Ontology Evolution in Data Integration Haridimos Kondylakis Dimitris Plexousakis Yannis Tzitzikas Computer Science Department, University of Crete.
Data Integration by Bi-Directional Schema Transformation Rules Data Integration by Bi-Directional Schema Transformation Rules By Peter McBrien and Alexandria.
Semantic Access to Existing Archives Using RDF and SPARQL Alasdair J G Gray.
PERCENTS. WHAT ARE PERCENTS?  We’ve done lots of work with fractions and decimals. We’ve determined that fractions that denominators of 100 are useful.
I. Khalil Ibrahim1 Data Integration in Digital Libraries: Approaches and Challenges Bringing Digital Libraries together Dr. Ismail Khalil Ibrahim
Efficient Processing of Semantic Information on the Web Georg Lausen Technische Fakultät Universität Freiburg.
1 Le Thi Thu Thuy*, Doan Dai Duong*, Virendrakumar C. Bhavsar* and Harold Boley** * Faculty of Computer Science, University of New Brunswick, Fredericton,
Introduction to Databases
Presented by Jiwen Sun, Lihui Zhao 24/3/2004
Answering Queries Using Views: The Last Frontier.
Answering Tree Pattern Queries Using Views Laks V.S. Lakshmanan, Hui (Wendy) Wang, and Zheng (Jessica) Zhao University of British Columbia Vancouver, BC.
Data Integration Hanna Zhong Department of Computer Science University of Illinois, Urbana-Champaign 11/12/2009.
Visit to HP Labs, 22/10/2002 Heterogeneous information integration Alex Poulovassilis Database and Web Technologies Group School of Computer Science and.
Data Integration Approaches
1 Integration of data sources Patrick Lambrix Department of Computer and Information Science Linköpings universitet.
Presented by Kyumars Sheykh Esmaili Description Logics for Data Bases (DLHB,Chapter 16) Semantic Web Seminar.
。 33 投资环境 3 开阔视野 提升竞争力 。 3 嘉峪关市概况 。 3 。 3 嘉峪关是一座新兴的工业旅游城市,因关得名,因企设市,是长城文化与丝路文化交 汇点,是全国唯一一座以长城关隘命名的城市。嘉峪关关城位于祁连山、黑山之间。 1965 年建市,下辖雄关区、镜铁区、长城区, 全市总面积 2935.
1 Representing and Reasoning on XML Documents: A Description Logic Approach D. Calvanese, G. D. Giacomo, M. Lenzerini Presented by Daisy Yutao Guo University.
Architetture della Informazione Anno accademico Carlo Batini Methodologies for planning the evolution of data architectures 1.
Collaborative Vocabulary Management
Equivalent Expressions Using the Distributive Property
MA.912.A.4.1 Simplify monomials and monomial expressions using the laws of integral exponents.
Hire Toyota Innova in Delhi for Outstation Tour
Introduction to Databases
Terms used in Multiplication
Local-as-View Mediators
Information Integration
Chen Li Information and Computer Science
Social Practice of the language: Describe and share information
Query Processing.
Presentation transcript:

1 Models for Information Integration: Tuning Local-as-view into Global-as-view Andrea Cali Giuseppe De Giacomo Maurizio Lenzerini

2 Local-as-view (LAV) vs. Global-as-view (GAV) zSpecifying the mapping between the global schema and the sources zProcessing queries expressed on the global schema zMaintenance

3 Problem zCan we transform a data integration system built with the LAV approach into an equivalent system following a GAV approach? LAV GAV equivalent transformation

4 Framework for Information Integration zDefinition 1. A data integration system I is a triple (G, S, M) yG : Global schema yS : Source schema yM : Mapping between G and S

5 From LAV to GAV zDefinition 2. Let I = be an integration system, having A G as the alphabet of the global schema. An integration system I’ on S is query equivalent to I if for every query q using only the symbols in A G, and for every source databases D: zQuery equivalent transformation (I and I’) yQuery alphabet yQuery answer

6 LAV System LAV

7 GAV System after Transformation

8 Example zLAV System I(G,S,M) yG: cites/2, sameTopic/2 yS: source1, source2 yM: xp(source1) = { |cites(X,Y) & cites(Y,X)} xp(source2) = { |sameTopic(X,Y)&cites(X,Z)&cites(Y,W)} zGAV System I’(G’,S,M’)

9 Example (Cont.) zGAV System I’(G’,S,M’) yG’: xRelations: cites/2, sameTopic/2, sourceImage1/2, sourceImage2/2, sourceImageExp1/2, sourceImageExp2/4 xInclusion dependencies: sourceImage1[1,2]  sourceImageExp1[1,2] sourceImage2[1,2]  sourceImageExp2[1,2] sourceImageExp1[1,2]  cites[1,2] sourceImageExp1[2,1]  cites[1,2] sourceImageExp2[1,3]  cites[1,2] sourceImageExp2[2,4]  cites[1,2] sourceImageExp2[1,2]  sameTopic[1,2] yM’ xp’(sourceImage1) = { |source1(X,Y)} xp’(sourceImage2) = { |source2(X,Y)}

10 Conclusion zStudy the relative expressive power of LAV and GAV approaches to data integration zTransform a LAV system into a GAV system yThe global schema is expressed in the relational model with inclusion dependencies yQueries used are expressed in the language of conjunctive queries