1 CS 140 Lecture 19 Sequential Modules Professor CK Cheng CSE Dept. UC San Diego.

Slides:



Advertisements
Similar presentations
CS 140 Lecture 16 System Designs Professor CK Cheng CSE Dept. UC San Diego 1.
Advertisements

Counters Discussion D8.3.
COUNTERS Counters with Inputs Kinds of Counters Asynchronous vs
1 CS 140L Lecture 8 System Design Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 10 Sequential Networks: Implementation Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140L Lecture 5 Professor CK Cheng CSE Dept. UC San Diego.
CS 140L Lecture 5 Professor CK Cheng 4/29/02. Asynchronous Counter D Q CLK D Q D Q There are n flip-flops. D FF is the delay of each flip-flop. When n.
1 CS 140 Lecture 12 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 9 Professor CK Cheng 4/30/02. Part II. Sequential Network 1.Memory 2.Specification 3.Implementation S XY s i t+1 = g i (S t, x t )
CS 140 Lecture 8 Professor CK Cheng 4/26/02. Part II. Sequential Network 1.Memory SR, D, T, JK, 2.Specification S XY s i t+1 = g i (S t, X t )
CSE 140 Lecture 8 Sequential Networks Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140 Lecture 16 System Designs Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140L Lecture 5: Counters Professor CK Cheng CSE Dept. UC San Diego 1.
1 CS 140 Lecture 9 Sequential Networks Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 8 Sequential Networks Professor CK Cheng CSE Dept. UC San Diego.
CSE 140L Lecture 4 Flip-Flops, Shifters and Counters Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140 Lecture 17 System Designs III Professor CK Cheng CSE Dept. UC San Diego 1.
Contemporary Logic Design Sequential Case Studies © R.H. Katz Transparency No Chapter #7: Sequential Logic Case Studies 7.1, 7.2 Counters.
CS 140 Lecture 17 System Designs III Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140 Lecture 10 Professor CK Cheng 5/02/02. Given the state table, implement with 2 JK flip flops id Q 1 (t) 0 1 Q 0 (t) X(t)
CS 140 Lecture 18 Professor CK Cheng 12/3/02. Standard Sequential Modules 1.Register 2.Shift Register 3.Counter.
1 CS 140 Lecture 18 Sequential Modules: Serial Adders, Multipliers Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 10 Professor CK Cheng 10/29/02. Part II. Sequential NetworkReminder 1.Flip flops 2.Specification 3.Implement Netlist  State Table  State.
CS 140 Lecture 5 Professor CK Cheng CSE Dept. UC San Diego.
CS 140L Lecture 7 Transformation between Mealy and Moore Machines Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 5 Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140 Lecture 9 Professor CK Cheng 10/24/02. Sequential Network 1.Components F-Fs 2.Specification D Q Q’ CLK.
CSE 140 Lecture 15 System Designs Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140L Lecture 4 Professor CK Cheng 10/22/02. 1)F-F 2)Shift register 3)Counter (Asynchronous) 4)Counter (Synchronous)
Design of Counters ..
Lecture 8: Sequential Networks and Finite State Machines CSE 140: Components and Design Techniques for Digital Systems Fall 2014 CK Cheng Dept. of Computer.
1 CSE 140 Lecture 12 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego.
Princess Sumaya Univ. Computer Engineering Dept. Chapter 6:
Counters By Taweesak Reungpeerakul
Counters. November 5, 2003 Introduction: Counters  Counters are circuits that cycle through a specified number of states.  Two types of counters: 
Lecture 9: Sequential Networks: Implementation CSE 140: Components and Design Techniques for Digital Systems Fall 2014 CK Cheng Dept. of Computer Science.
CSE 140 Lecture 12 Combinational Standard Modules CK Cheng CSE Dept. UC San Diego 1.
EE121 John Wakerly Lecture #9
SYEN 3330 Digital SystemsJung H. Kim 1 SYEN 3330 Digital Systems Chapter 7 – Part 2.
CSE 140: Components and Design Techniques for Digital Systems Lecture 9: Sequential Networks: Implementation CK Cheng Dept. of Computer Science and Engineering.
CSE 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
CSE 140 Lecture 12 Combinational Standard Modules CK Cheng CSE Dept. UC San Diego 1.
CSE 140 Lecture 15 System Design II CK Cheng CSE Dept. UC San Diego 1.
CSE 140 Lecture 13 System Designs
CSE 140 Lecture 8 Sequential Networks
Sequential Networks and Finite State Machines
CSE 140 Lecture 14 System Designs
CSE 140 Lecture 14 System Designs
Prof. Hsien-Hsin Sean Lee
Sequential Logic Counters and Registers
Dr. Clincy Professor of CS
CSE 140 Lecture 16 System Designs
CSE 140 Lecture 15 System Designs
CSE 140 Lecture 17 System Design II
Analog-to-Digital Converters
CSE 140 Lecture 10 Sequential Networks: Implementation
CS 140 Lecture 16 Professor CK Cheng 11/21/02.
CSE 140 Lecture 14 System Design
CS 140 Lecture 19 Standard Modules
CS 140 Lecture 15 Sequential Modules
CSE 140 Lecture 16 System Designs II
Professor CK Cheng CSE Dept. UC San Diego
CS M51A/EE M16 Winter’05 Section 1 Logic Design of Digital Systems Lecture 16 March 14 W’05 Yutao He 4532B Boelter Hall
Switching Theory and Logic Design Chapter 5:
CSE 140 Lecture 9 Sequential Networks
CS 140L Lecture 7 Transformation between Mealy and Moore Machines
CS 140L Lecture 8 Professor CK Cheng 11/19/02.
CSE140 Final Review Xinyuan Wang 06/06/2019.
CSE 140 Lecture 16 System Designs
Presentation transcript:

1 CS 140 Lecture 19 Sequential Modules Professor CK Cheng CSE Dept. UC San Diego

2 Standard Sequential Modules 1.Register 2.Shift Register 3.Counter

3 Counter Applications?

4 Counter: Applications Program Counter Address Keeper: FIFO, LIFO Clock Divider Sequential Machine

5 Counter Modulo-n Counter Modulo Counter (m<n) Counter (a-to-b) Counter of an Arbitrary Sequence Cascade Counter

6 Modulo-n Counter LD D Q TC Q (t+1) = (0, 0,.., 0) if CLR = 1 = D if LD = 1 and CLR = 0 = (Q(t)+1)mod nif LD = 0, CNT = 1 and CLR = 0 = Q (t) if LD = 0, CNT = 0 and CLR = 0 CNT CLR Clk TC = 1 if Q (t) = n-1 and CNT = 1 = 0otherwise

7 Modulo-m Counter (m< n) Given a mod 16 counter, construct a mod-m counter (0 < m < 16) with AND, OR, NOT gates m = 6 Q 3 Q 2 Q 1 Q CLK CLR CNT D 3 D 2 D 1 D LD Q2Q2 Q0Q0 X Set LD = 1 when X = 1 and (Q 3 Q 2 Q 1 Q 0 ) = (0101), ie m-1

8 A 5-to-11 Counter Q 3 Q 2 Q 1 Q 0 Clk CLR CNT D 3 D 2 D 1 D (a) LD Q3Q3 Q0Q0 X Set LD = 1 when X = 1 and (Q 3 Q 2 Q 1 Q 0 ) = b (in this case, 1011) Counter (a-to-b) Given a mod 16 counter, construct an a-to-b counter (0 < a < b < 15) Q1Q1 (b)

9 Given a mod 8 counter, construct a counter with sequence Q 2 Q 1 Q 0 Clk CLR CNT D 2 D 1 D 0 LD Q2’Q2’ Q0Q0 X Q2Q2 Q 0 Q 1 Q 0 Q0’Q0’ When Q = 1, load D = 5 When Q = 6, load D = 2 When Q = 3, load D = 7 Counter of an Arbitrary Sequence

10 LD = Q 2’ Q 0 + Q 2 Q 0’ D 2 = Q 0 D 1 = Q 1 D 0 = Q 0 K Mapping LD and D, we get Id Q2Q1Q0Q2Q1Q0 LDD2D2 D1D1 D0D Given a mod 8 counter, construct a counter with sequence Counter of an Arbitrary Sequence

11 D 2 = Q 0 D 1 = Q 1’ + Q 0 D 0 = Q 1’ Q 0 LD = Q 2’ Q 1’ + Q 2 Q 0 + Q 2 Q 1 Through K-map, we derive Example: Count in sequence LD = 1 D = 2 When Q(t) = 0 LD = 1 D = 7 When Q(t) = 5 LD = 1 D = 6 When Q(t) = 7 LD = 1 D = 0 When Q(t) = 6 Id Q2Q1Q0Q2Q1Q0 LDD2D2 D1D1 D0D Counter of an Arbitrary Sequence

12 Cascade Counter CNT LD TC Clk Q 7, Q 6, Q 5, Q 4 D 7, D 6, D 5, D 4 CNT LD TC Clk Q 3, Q 2, Q 1, Q 0 D 3, D 2, D 1, D 0 X T C0 A Cascade Modulo 256 Counter

13 TC = 1 when (Q 3, Q 2, Q 1, Q 0 )=(1,1,1,1) and X=1 (Q 7 (t+1) Q 6 (t+1) Q 5 (t+1) Q 4 (t+1) ) = (Q 7 (t) Q 6 (t) Q 5 (t) Q 4 (t) ) + 1 mod 16 when T C0 = 1 The circuit functions as a modulo 256 counter. Cascade Counter Time 0123… Q … T C0 0000… Q …