Trees, Binary Trees, and Binary Search Trees COMP171.

Slides:



Advertisements
Similar presentations
Trees Types and Operations
Advertisements

1 abstract containers hierarchical (1 to many) graph (many to many) first ith last sequence/linear (1 to 1) set.
Binary Trees, Binary Search Trees CMPS 2133 Spring 2008.
Binary Trees, Binary Search Trees COMP171 Fall 2006.
CS 171: Introduction to Computer Science II
Heaps, Heap Sort, and Priority Queues
Trees, Binary Trees, and Binary Search Trees. 2 Trees * Linear access time of linked lists is prohibitive n Does there exist any simple data structure.
1 Trees. 2 Outline –Tree Structures –Tree Node Level and Path Length –Binary Tree Definition –Binary Tree Nodes –Binary Search Trees.
Lec 15 April 9 Topics: l binary Trees l expression trees Binary Search Trees (Chapter 5 of text)
1 abstract containers hierarchical (1 to many) graph (many to many) first ith last sequence/linear (1 to 1) set.
1 Trees Linear access time of linked lists is prohibitive –Does there exist any simple data structure for which the running time of most operations (search,
1 BST Trees A binary search tree is a binary tree in which every node satisfies the following: the key of every node in the left subtree is.
Version TCSS 342, Winter 2006 Lecture Notes Trees Binary Trees Binary Search Trees.
CS 146: Data Structures and Algorithms June 18 Class Meeting Department of Computer Science San Jose State University Summer 2015 Instructor: Ron Mak
Binary Search Trees. BST Properties Have all properties of binary tree Items in left subtree are smaller than items in any node Items in right subtree.
Advanced Algorithms Analysis and Design Lecture 8 (Continue Lecture 7…..) Elementry Data Structures By Engr Huma Ayub Vine.
Lecture Objectives  To learn how to use a tree to represent a hierarchical organization of information  To learn how to use recursion to process trees.
Lecture 10 Trees –Definiton of trees –Uses of trees –Operations on a tree.
1 Trees A tree is a data structure used to represent different kinds of data and help solve a number of algorithmic problems Game trees (i.e., chess ),
CMSC 341 Introduction to Trees. 8/3/2007 UMBC CMSC 341 TreeIntro 2 Tree ADT Tree definition  A tree is a set of nodes which may be empty  If not empty,
DATA STRUCTURES AND ALGORITHMS Lecture Notes 5 Prepared by İnanç TAHRALI.
BINARY SEARCH TREE. Binary Trees A binary tree is a tree in which no node can have more than two children. In this case we can keep direct links to the.
Tree (new ADT) Terminology:  A tree is a collection of elements (nodes)  Each node may have 0 or more successors (called children)  How many does a.
Binary Trees, Binary Search Trees RIZWAN REHMAN CENTRE FOR COMPUTER STUDIES DIBRUGARH UNIVERSITY.
Data Structures and Algorithm Analysis Trees Lecturer: Jing Liu Homepage:
Trees, Binary Trees, and Binary Search Trees COMP171.
Starting at Binary Trees
Trees  Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search,
Lec 15 Oct 18 Binary Search Trees (Chapter 5 of text)
CE 221 Data Structures and Algorithms Chapter 4: Trees (Binary) Text: Read Weiss, §4.1 – 4.2 1Izmir University of Economics.
Chapter 4: Trees Part I: General Tree Concepts Mark Allen Weiss: Data Structures and Algorithm Analysis in Java.
Binary Search Trees (BSTs) 18 February Binary Search Tree (BST) An important special kind of binary tree is the BST Each node stores some information.
CMSC 341 Introduction to Trees. 2/21/20062 Tree ADT Tree definition –A tree is a set of nodes which may be empty –If not empty, then there is a distinguished.
Binary Tree. Some Terminologies Short review on binary tree Tree traversals Binary Search Tree (BST)‏ Questions.
1 Chapter 4 Trees Basic concept How tree are used to implement the file system How tree can be used to evaluate arithmetic expressions How to use trees.
Rooted Tree a b d ef i j g h c k root parent node (self) child descendent leaf (no children) e, i, k, g, h are leaves internal node (not a leaf) sibling.
24 January Trees CSE 2011 Winter Trees Linear access time of linked lists is prohibitive  Does there exist any simple data structure for.
1 Trees General Trees  Nonrecursive definition: a tree consists of a set of nodes and a set of directed edges that connect pairs of nodes.
1 Joe Meehean. A A B B D D I I C C E E X X A A B B D D I I C C E E X X  Terminology each circle is a node pointers are edges topmost node is the root.
Definitions Read Weiss, 4.1 – 4.2 Implementation Nodes and Links One Arrays Three Arrays Traversals Preorder, Inorder, Postorder K-ary Trees Converting.
TREES General trees Binary trees Binary search trees AVL trees Balanced and Threaded trees.
1 CMSC 341 Introduction to Trees Textbook sections:
1 Trees. 2 Trees Trees. Binary Trees Tree Traversal.
1 Trees 3: The Binary Search Tree Reading: Sections 4.3 and 4.6.
DS.T.1 Trees Chapter 4 Overview Tree Concepts Traversals Binary Trees Binary Search Trees AVL Trees Splay Trees B-Trees.
CS 201 Data Structures and Algorithms
CC 215 Data Structures Trees
BCA-II Data Structure Using C
Binary Search Tree (BST)
CMSC 341 Introduction to Trees.
CSE 373 Data Structures Lecture 7
TREE DATA STRUCTURE Data Structure 21-Sep-18 Tree
Binary Search Trees Why this is a useful data structure. Terminology
Binary Trees, Binary Search Trees
Chapter 22 : Binary Trees, AVL Trees, and Priority Queues
Map interface Empty() - return true if the map is empty; else return false Size() - return the number of elements in the map Find(key) - if there is an.
CMSC 341 Lecture 10 Binary Search Trees
Trees 3: The Binary Search Tree
Trees, Binary Trees, and Binary Search Trees
Lec 12 March 9, 11 Mid-term # 1 (March 21?)
Trees CSE 373 Data Structures.
Trees.
CE 221 Data Structures and Algorithms
Data Structures and Algorithm Analysis Trees
Binary Trees, Binary Search Trees
CE 221 Data Structures and Algorithms
Trees.
Trees CSE 373 Data Structures.
Trees CSE 373 Data Structures.
Binary Trees, Binary Search Trees
Presentation transcript:

Trees, Binary Trees, and Binary Search Trees COMP171

2 Trees * Linear access time of linked lists is prohibitive n Does there exist any simple data structure for which the running time of most operations (search, insert, delete) is O(log N)? * Trees n Basic concepts n Tree traversal n Binary tree n Binary search tree and its operations

3 Trees * A tree T is a collection of nodes n T can be empty n (recursive definition) If not empty, a tree T consists of  a (distinguished) node r (the root),  and zero or more nonempty subtrees T 1, T 2,...., T k

4 Some Terminologies * Child and Parent n Every node except the root has one parent n A node can have an zero or more children * Leaves n Leaves are nodes with no children * Sibling n nodes with same parent

5 More Terminologies * Path n A sequence of edges * Length of a path n number of edges on the path * Depth of a node n length of the unique path from the root to that node * Height of a node n length of the longest path from that node to a leaf n all leaves are at height 0 * The height of a tree = the height of the root = the depth of the deepest leaf * Ancestor and descendant n If there is a path from n1 to n2 n n1 is an ancestor of n2, n2 is a descendant of n1 n Proper ancestor and proper descendant

6 Example: UNIX Directory

7 Example: Expression Trees * Leaves are operands (constants or variables) * The internal nodes contain operators * Will not be a binary tree if some operators are not binary

8 Tree Traversal * Used to print out the data in a tree in a certain order * Pre-order traversal n Print the data at the root n Recursively print out all data in the leftmost subtree n … n Recursively print out all data in the rightmost subtree

9 Preorder, Postorder and Inorder * Preorder traversal n node, left, right n prefix expression  ++a*bc*+*defg

10 Preorder, Postorder and Inorder * Postorder traversal n left, right, node n postfix expression  abc*+de*f+g*+ * Inorder traversal n left, node, right n infix expression  a+b*c+d*e+f*g

11 Example: Unix Directory Traversal PreOrderPostOrder

12 Preorder, Postorder and Inorder Pseudo Code

13 Binary Trees * A tree in which no node can have more than two children * The depth of an “average” binary tree is considerably smaller than N, even though in the worst case, the depth can be as large as N – 1. Generic binary tree Worst-case binary tree

14 Convert a Generic Tree to a Binary Tree

15 Binary Tree ADT * Possible operations on the Binary Tree ADT n Parent, left_child, right_child, sibling, root, etc * Implementation n Because a binary tree has at most two children, we can keep direct pointers to them n a linked list is physically a pointer, so is a tree. * Define a Binary Tree ADT later …

16 A drawing of linked list with one pointer … A drawing of binary tree with two pointers … Struct BinaryNode { double element; // the data BinaryNode* left; // left child BinaryNode* right; // right child }

17 Binary Search Trees (BST) * A data structure for efficient searching, inser- tion and deletion * Binary search tree property n For every node X n All the keys in its left subtree are smaller than the key value in X n All the keys in its right subtree are larger than the key value in X

18 Binary Search Trees A binary search tree Not a binary search tree

19 Binary Search Trees * Average depth of a node is O(log N) * Maximum depth of a node is O(N) The same set of keys may have different BSTs

20 Searching BST * If we are searching for 15, then we are done. * If we are searching for a key < 15, then we should search in the left subtree. * If we are searching for a key > 15, then we should search in the right subtree.

21

22 Searching (Find) * Find X: return a pointer to the node that has key X, or NULL if there is no such node * Time complexity: O(height of the tree) find(const double x, BinaryNode* t) const

23 Inorder Traversal of BST * Inorder traversal of BST prints out all the keys in sorted order Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

24 findMin/ findMax * Goal: return the node containing the smallest (largest) key in the tree * Algorithm: Start at the root and go left (right) as long as there is a left (right) child. The stopping point is the smallest (largest) element * Time complexity = O(height of the tree) BinaryNode* findMin(BinaryNode* t) const

25 Insertion * Proceed down the tree as you would with a find * If X is found, do nothing (or update something) * Otherwise, insert X at the last spot on the path traversed * Time complexity = O(height of the tree)

26 void insert(double x, BinaryNode*& t) { if (t==NULL) t = new BinaryNode(x,NULL,NULL); else if (x element) insert(x,t->left); else if (t->element right); else ; // do nothing }

27 Deletion * When we delete a node, we need to consider how we take care of the children of the deleted node. n This has to be done such that the property of the search tree is maintained.

28 Deletion under Different Cases * Case 1: the node is a leaf n Delete it immediately * Case 2: the node has one child n Adjust a pointer from the parent to bypass that node

29 Deletion Case 3 * Case 3: the node has 2 children n Replace the key of that node with the minimum element at the right subtree n Delete that minimum element  Has either no child or only right child because if it has a left child, that left child would be smaller and would have been chosen. So invoke case 1 or 2. * Time complexity = O(height of the tree)

30 void remove(double x, BinaryNode*& t) { if (t==NULL) return; if (x element) remove(x,t->left); else if (t->element right); else if (t->left != NULL && t->right != NULL) // two children { t->element = finMin(t->right) ->element; remove(t->element,t->right); } else { Binarynode* oldNode = t; t = (t->left != NULL) ? t->left : t->right; delete oldNode; }

31 Make a binary or BST ADT …

32 Struct Node { double element; // the data Node* left; // left child Node* right; // right child } class Tree { public: Tree(); // constructor Tree(const Tree& t); ~Tree(); // destructor bool empty() const; double root(); // decomposition (access functions) Tree& left(); Tree& right(); void insert(const double x); // compose x into a tree void remove(const double x); // decompose x from a tree private: Node* root; } update access, selection For a generic (binary) tree: (insert and remove are different from those of BST)

33 Struct Node { double element; // the data Node* left; // left child Node* right; // right child } class BST { public: BST(); // constructor BST(const Tree& t); ~BST(); // destructor bool empty() const; double root(); // decomposition (access functions) BST left(); BST right(); bool serch(const double x); // search an element void insert(const double x); // compose x into a tree void remove(const double x); // decompose x from a tree private: Node* root; } update access, selection For BST tree: BST is for efficient search, insertion and removal, so restricting these functions.

34 class BST { public: BST(); BST(const Tree& t); ~BST(); bool empty() const; bool search(const double x); // contains void insert(const double x); // compose x into a tree void remove(const double x); // decompose x from a tree private: Struct Node { double element; Node* left; Node* right; Node(…) {…}; // constructuro for Node } Node* root; void insert(const double x, Node*& t) const; // recursive function void remove(…) Node* findMin(Node* t); void makeEmpty(Node*& t); // recursive ‘destructor’ bool contains(const double x, Node* t) const; } Weiss textbook:

35 root, left subtree, right subtree are missing: 1. we can’t write other tree algorithms, is implementation dependent, BUT, 2. this is only for BST (we only need search, insert and remove, may not need other tree algorithms) so it’s two layers, the public for BST, and the private for Binary Tree. 3. it might be defined internally in ‘private’ part (actually it’s implicitly done). Comments:

36 void insert(double x, BinaryNode*& t) { if (t==NULL) t = new BinaryNode(x,NULL,NULL); else if (x element) insert(x,t->left); else if (t->element right); else ; // do nothing } void insert(double x) { insert(x,root); } A public non-recursive member function: A private recursive member function: