LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04.

Slides:



Advertisements
Similar presentations
1 Einstein's Legacy: General Relativity, our Best Description of the Universe Barry C. Barish Caltech AAAS 20-Feb-05 LIGO-xxx Crab Pulsar.
Advertisements

- Gravitational Wave Detection of Astrophysical Sources Barry C. Barish Caltech Neutrino Telescope Venice 24-Feb-05 LIGO-xxx Crab Pulsar.
1 Science Opportunities for Australia Advanced LIGO Barry Barish Director, LIGO Canberra, Australia 16-Sept-03 LIGO-G M.
LIGO-G Z Results from LIGO’s second science run: a search for continuous gravitational waves Michael Landry LIGO Hanford Observatory California.
LIGO-GXX What is LIGO (LSC/GEO/Virgo/…)? Gabriela González, Louisiana State University For the LIGO Scientific Collaboration and the Virgo Collaboration.
Probing the Universe for Gravitational Waves Barry C. Barish Caltech University of Illinois 16-Feb-06 Crab Pulsar.
Interferometric Gravitational Wave Detectors Barry C. Barish Caltech TAUP 9-Sept-03 "Colliding Black Holes" Credit: National Center for Supercomputing.
Status and Prospects for LIGO Barry C. Barish Caltech 17-March-06 St Thomas, Virgin Islands Crab Pulsar.
Probing the Universe for Gravitational Waves Barry C. Barish Caltech Cornell University 3-April-06 Crab Pulsar.
1 Einstein's Legacy: General Relativity, our Best Description of the Universe Barry C. Barish Caltech LLNL Science Day 23-May-05.
1 What can gravitational waves do to probe early cosmology? Barry C. Barish Caltech “Kavli-CERCA Conference on the Future of Cosmology” Case Western Reserve.
Einstein’s Theory of Gravitation “instantaneous action at a distance”
1 Probing the Universe for Gravitational Waves Barry C. Barish Caltech Los Angeles Astronomical Society 8-Nov-04 "Colliding Black Holes" Credit: National.
Detecting Gravitational Waves: How does LIGO work and how well does LIGO work? Barry C. Barish Caltech University of Kentucky 4-March-05 "Colliding.
1 Observing the Most Violent Events in the Universe Virgo Barry Barish Director, LIGO Virgo Inauguration 23-July-03 Cascina 2003.
Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05.
1 Probing the Universe for Gravitational Waves Barry C. Barish Caltech UC Davis 12-April-04 "Colliding Black Holes" Credit: National Center for Supercomputing.
1 LIGO and the Quest for Gravitational Waves Barry C. Barish Caltech UT Austin 24-Sept-03 "Colliding Black Holes" Credit: National Center for Supercomputing.
R. Frey Student Visit 1 Gravitational Waves, LIGO, and UO GW Physics LIGO
Probing the Universe for Gravitational Waves Barry C. Barish Caltech Georgia Tech 26-April-06 Crab Pulsar.
1 Probing the Universe for Gravitational Waves Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 "Colliding Black Holes" Credit: National Center.
Gravitational Wave Detectors: new eyes for physics and astronomy Gabriela González Department of Physics and Astronomy Louisiana State University.
David Shoemaker 30 August 05
GridLab, Eger, 31 Mar-1 Apr Potential Gravitational Applications of Grid B.S. Sathyaprakash GridLab conference, 31.
The Astrophysics of Gravitational Wave Sources Conference Summary: Ground-Based Detectors ( Hz) Kimberly New, LANL.
Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.
Advanced LIGO: our future in gravitational astronomy K.A. Strain for the LIGO Science Collaboration NAM 2008 LIGO-G K.
LIGO-G D 1 Analysis of the first LIGO data Erik Katsavounidis LIGO Laboratory MIT On behalf of the LIGO Scientific Collaboration APS meeting,
The LIGO Project: a Status Report
LIGO- G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004.
14 July LNGSSearch for Gravitational Waves with Interferometers 1 The search for gravitational waves with the new generation of interferometers Peter.
Status of LIGO Data Analysis Gabriela González Department of Physics and Astronomy Louisiana State University for the LIGO Scientific Collaboration Dec.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
LIGO- G D Status of LIGO Stan Whitcomb ACIGA Workshop 21 April 2004.
RAS National Astronomy Meeting, Queens University, Belfast Gravitational wave astrophysics: Are we there yet? Matthew Pitkin for the LIGO Scientific Collaboration.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
Advanced interferometers for astronomical observations Lee Samuel Finn Center for Gravitational Wave Physics, Penn State.
1 Gravitational Wave Astronomy using 0.1Hz space laser interferometer Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17.
Searching for Gravitational Waves with LIGO Andrés C. Rodríguez Louisiana State University on behalf of the LIGO Scientific Collaboration SACNAS
Laura Cadonati (MIT) For the LIGO Scientific Collaboration SESAPS 2006
Searching for Gravitational Waves with LIGO: A New Window on The Universe Duncan Brown Syracuse University RIT Physics Colloquium November 19, 2007 LIGO-G Z.
G Z 1 Searching for gravitational waves with LIGO Gabriela González Louisiana State University On behalf of the LIGO Scientific Collaboration.
Gravitational Wave Astronomy Gregory Harry Massachusetts Institute of Technology April 25, 2006 Hobart and William Smith Colleges G R.
LIGO-G Z LIGO Observational Results I Patrick Brady University of Wisconsin-Milwaukee on behalf of LIGO Scientific Collaboration.
NSF 21 Oct Science Nuggets Jolien Creighton University of Wisconsin–Milwaukee.
Searching for gravitational waves with LIGO detectors
LIGO- G D Gravitational Wave Observations with Interferometers: Results and Prospects Stan Whitcomb for the LIGO Scientific Collaboration 2 nd.
ADVANCED LIGO SCIENCE Kip S. Thorne CaRT, California Institute of Technology NSF Advanced R&D Panel - 29 January 2001.
Gravitational wave astronomy: a facilities overview Barry C. Barish Caltech AAS San Diego 13-Jan-05 LISA.
LIGO-G Z Introduction to LIGO, Overview and Status Peter R. Saulson Spokesperson, LIGO Scientific Collaboration.
APS meeting, Dallas 22/04/06 1 A search for gravitational wave signals from known pulsars using early data from the LIGO S5 run Matthew Pitkin on behalf.
LIGO-G M Scientific Operation of LIGO Gary H Sanders LIGO Laboratory California Institute of Technology APS Meeting APR03, Philadelphia Gravitational-Wave.
The LIGO gravitational wave observatories : Recent results and future plans Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO.
LIGO G M Intro to LIGO Seismic Isolation Pre-bid meeting Gary Sanders LIGO/Caltech Stanford, April 29, 2003.
G Z The LIGO gravitational wave detector consists of two observatories »LIGO Hanford Observatory – 2 interferometers (4 km long arms and 2 km.
LIGO-G M Press Conference Scientific Operation of LIGO Gary H Sanders Caltech (on behalf of a large team) APS April Meeting Philadelphia 6-April-03.
LIGO- G D Results from the LIGO Science Runs Stan Whitcomb for the LIGO Scientific Collaboration Aspen Winter Conference on Gravitational Waves.
GW – the first GW detection ! Is it a start of GW astronomy ? If “yes” then which ? «Счастлив, кто посетил сей мир в его минуты роковые !...» Ф.Тютчев.
APS Meeting April 2003 LIGO-G Z 1 Sources and Science with LIGO Data Jolien Creighton University of Wisconsin–Milwaukee On Behalf of the LIGO.
Searching the LIGO data for coincidences with Gamma Ray Bursts Alexander Dietz Louisiana State University for the LIGO Scientific Collaboration LIGO-G Z.
The search for those elusive gravitational waves
Brennan Hughey MIT Kavli Institute Postdoc Symposium
Gravitational Wave Detection of Astrophysical Sources Barry C
Analysis of LIGO S2 data for GWs from isolated pulsars
Coherent wide parameter space searches for gravitational waves from neutron stars using LIGO S2 data Xavier Siemens, for the LIGO Scientific Collaboration.
GW150914: The first direct detection of gravitational waves
Spokesperson, LIGO Scientific Collaboration
Gravity -- Studying the Fabric of the Universe Barry C
Status of LIGO Patrick J. Sutton LIGO-Caltech
Searches for gravitational waves by the LIGO Scientific Collaboration
Presentation transcript:

LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04

Science Goals Physics »Direct verification of the most “relativistic” prediction of general relativity »Detailed tests of properties of gravitational waves: speed, strength, polarization, … »Probe of strong-field gravity – black holes »Early universe physics Astronomy and astrophysics »Abundance & properties of supernovae, neutron star binaries, black holes »Tests of gamma-ray burst models »Neutron star equation of state »A new window on the universe

LIGO Observatories Hanford Observatory Washington Two interferometers (4 km and 2 km arms) Livingston Observatory Louisiana One interferometer (4km) GEODETIC DATA (WGS84) h: m X arm: N °W  : N46°27’ ” Y arm: S °W  W119°24’ ” GEODETIC DATA (WGS84) h: m X arm: S °W  : N30°33’ ” Y arm: S °E : W90°46’ ”

LIGO Commissioning and Science Timeline Now

Interferometer Noise Limits Thermal (Brownian) Noise LASER test mass (mirror) Beam splitter Residual gas scattering Wavelength & amplitude fluctuations photodiode Seismic Noise Quantum Noise "Shot" noise Radiation pressure

What Limits LIGO Sensitivity? Seismic noise limits low frequencies Thermal Noise limits middle frequencies Quantum nature of light (Shot Noise) limits high frequencies Technical issues - alignment, electronics, acoustics, etc limit us before we reach these design goals

Science Runs S2 ~ 0.9Mpc S1 ~ 100 kpc E8 ~ 5 kpc NN Binary Inspiral Range S3 ~ 3 Mpc Design~ 18 Mpc A Measure of Progress Milky Way AndromedaVirgo Cluster

Best Performance to Date …. Range ~ 6 Mpc

Astrophysical Sources signatures Compact binary inspiral: “chirps” »NS-NS waveforms are well described »BH-BH need better waveforms »search technique: matched templates Supernovae / GRBs: “bursts” »burst signals in coincidence with signals in electromagnetic radiation »prompt alarm (~ one hour) with neutrino detectors Pulsars in our galaxy: “periodic” »search for observed neutron stars (frequency, doppler shift) »all sky search (computing challenge) »r-modes Cosmological Signal “stochastic background”

Compact binary collisions »Neutron Star – Neutron Star –waveforms are well described »Black Hole – Black Hole –need better waveforms »Search: matched templates “chirps”

Inspiral Gravitational Waves Compact-object binary systems lose energy due to gravitational waves. Waveform traces history. In LIGO frequency band (40  2000 Hz) for a short time just before merging: anywhere from a few minutes to <<1 second, depending on mass. “Chirp” waveform h Waveform is known accurately for objects up to ~3 M ๏ “Post-Newtonian expansion” in powers of (Gm/rc 2 ) is adequate  Use matched filtering.

Preliminary S2 Binary Neutron Star Result Observation time ( T obs ) : 355 hours Conservative lower bound on N G = 1.14 »Take the “worst case” for all systematic uncertainties to obtain this value Conservative upper limit: Preliminary S2 Upper Limit: R 90% < 50 per year per MWEG

Astrophysical Sources signatures Compact binary inspiral: “chirps” »NS-NS waveforms are well described »BH-BH need better waveforms »search technique: matched templates Supernovae / GRBs: “bursts” »burst signals in coincidence with signals in electromagnetic radiation »prompt alarm (~ one hour) with neutrino detectors Pulsars in our galaxy: “periodic” »search for observed neutron stars (frequency, doppler shift) »all sky search (computing challenge) »r-modes Cosmological Signal “stochastic background”

Detection of Burst Sources  Known sources -- Supernovae & GRBs » Coincidence with observed electromagnetic observations. » No close supernovae occurred during the first science run » Second science run – We are analyzing the recent very bright and close GRB NO RESULT YET  Unknown phenomena » Emission of short transients of gravitational radiation of unknown waveform (e.g. black hole mergers).

‘Unmodeled’ Bursts search for waveforms from sources for which we cannot currently make an accurate prediction of the waveform shape. GOAL METHODS Time-Frequency Plane Search ‘TFCLUSTERS’ Pure Time-Domain Search ‘SLOPE’ frequency time ‘Raw Data’Time-domain high pass filter 0.125s 8Hz

Triggered searches:  -ray bursts & gravitational waves During S2, GRB occurred. Detected by HETE-2, Konus-Wind, Helicon/KoronasF “Close”: z = ; d L =800Mpc (WMAP params) Strong evidence for supernova origin of long GRBs. H1, H2 operating before, during, after burst Radiation from a broadband burst at this distance? We searched, using cross-correlation between H1 and H2 as a measure of possible signal strength.

GRB No event exceeded analysis threshold Using simulations an upper limit on the associated gravitational wave strength at the detector at the level of h RSS ~6x Hz -1/2 was set Radiation from a broadband burst at this distance? E GW > 10 5 M 8

Astrophysical Sources signatures Compact binary inspiral: “chirps” »NS-NS waveforms are well described »BH-BH need better waveforms »search technique: matched templates Supernovae / GRBs: “bursts” »burst signals in coincidence with signals in electromagnetic radiation »prompt alarm (~ one hour) with neutrino detectors Pulsars in our galaxy: “periodic” »search for observed neutron stars (frequency, doppler shift) »all sky search (computing challenge) »r-modes Cosmological Signal “stochastic background”

Detection of Periodic Sources Pulsars in our galaxy: “periodic” »search for observed neutron stars »all sky search (computing challenge) »r-modes  Frequency modulation of signal due to Earth’s motion relative to the Solar System Barycenter, intrinsic frequency changes.  Amplitude modulation due to the detector’s antenna pattern.

Directed searches NO DETECTION EXPECTED at present sensitivities PSR J Hz Limits of detectability for rotating NS with equatorial ellipticity  =  I/I zz : 10 -3, 10 -4, kpc. Crab Pulsar

R moment of inertia tensor gravitational ellipticity of pulsar Assumes emission is due to deviation from axisymmetry: Upper limit on pulsar ellipticity h 0 <   < (M=1.4M sun, r=10km, R=3.6kpc) J

Multi-detector upper limits S2 Data Run Performed joint coherent analysis for 28 pulsars using data from all IFOs. Most stringent UL is for pulsar J (~333 Hz) where 95% confident that h 0 < 2.3x % upper limit for Crab pulsar (~ 60 Hz) is h 0 < 5.1 x % upper limit for J (~ 1284 Hz) is h 0 < 1.3 x % upper limits

Approaching spin-down upper limits For Crab pulsar (B ) we are still a factor of ~35 above the spin-down upper limit in S2. Hope to reach spin-down based upper limit in S3! Note that not all pulsars analysed are constrained due to spin-down rates; some actually appear to be spinning-up (associated with accelerations in globular cluster). Ratio of S2 upper limits to spin- down based upper limits

Signals from the Early Universe Cosmic Microwave background WMAP 2003 stochastic background

Signals from the Early Universe Strength specified by ratio of energy density in GWs to total energy density needed to close the universe: Detect by cross-correlating output of two GW detectors: First LIGO Science Data Hanford - Livingston

Gravitational Waves from the Early Universe E7 S1 S2 LIGO Adv LIGO results projected

Advanced LIGO will dramatically extend our reach Science from a few hours of Advanced LIGO observing should be comparable to 1 year of initial LIGO! Advanced LIGO

Advanced LIGO improved subsystems Active Seismic Multiple Suspensions Sapphire Optics Higher Power Laser

Advanced LIGO Cubic Law for “Window” on the Universe Initial LIGO Advanced LIGO Improve amplitude sensitivity by a factor of 10x… …number of sources goes up 1000x! Virgo cluster Today

Advanced LIGO Enhanced Systems laser suspension seismic isolation test mass Rate Improvement ~ narrow band optical configuration