Penn ESE353 Spring 2008 -- DeHon 1 ESE535: Electronic Design Automation Day 6: February 5, 2008 Multi-level Synthesis.

Slides:



Advertisements
Similar presentations
1 EECS 219B Spring 2001 Node minimization Andreas Kuehlmann.
Advertisements

FPGA-Based System Design: Chapter 4 Copyright  2004 Prentice Hall PTR Topics n Logic synthesis. n Placement and routing.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 14: March 19, 2014 Compute 2: Cascades, ALUs, PLAs.
ECE 667 Synthesis & Verification - Algebraic Division 1 ECE 667 ECE 667 Synthesis and Verification of Digital Systems Multi-level Minimization Algebraic.
1 Outline Division is central in many operations. –What is it (in the context of Boolean functions)? –What to divide (divisor) with? –How to divide (quotient.
Multilevel Logic Minimization -- Introduction. ENEE 6442 Outline > Multi-level minimization: technology independent local optimization. > What to optimize:
Logic Synthesis Part II
EDA (CS286.5b) Day 15 Logic Synthesis: Two-Level.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day10: October 25, 2000 Computing Elements 2: Cascades, ALUs,
EDA (CS286.5b) Day 17 Sequential Logic Synthesis (FSM Optimization)
Logic Synthesis Outline –Logic Synthesis Problem –Logic Specification –Two-Level Logic Optimization Goal –Understand logic synthesis problem –Understand.
Logic Synthesis 5 Outline –Multi-Level Logic Optimization –Recursive Learning - HANNIBAL Goal –Understand recursive learning –Understand HANNIBAL algorithms.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 4: February 25, 2009 Two-Level Logic-Synthesis.
Penn ESE353 Spring DeHon 1 ESE535: Electronic Design Automation Day 14: March 16, 2009 Multi-level Synthesis.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 7: February 11, 2008 Static Timing Analysis and Multi-Level Speedup.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 19: April 9, 2008 Routing 1.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 5: February 2, 2009 Architecture Synthesis (Provisioning, Allocation)
Gate Logic: Two Level Canonical Forms
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 12: March 2, 2009 Sequential Optimization (FSM Encoding)
Multilevel Logic Synthesis -- Algebraic Methods. ENEE 6442 Why Algebraic Methods? > What is our goal? minimization, maximally factored form. > Algebraic.
Contemporary Logic Design Two-Level Logic © R.H. Katz Transparency No. 4-1 Chapter #2: Two-Level Combinational Logic Section 2.3, Switches and Tools.
EDA (CS286.5b) Day 16 Logic Synthesis: Multi-Level.
ECE 667 Synthesis and Verification of Digital Systems
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 15: March 18, 2009 Static Timing Analysis and Multi-Level Speedup.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 5: February 2, 2009 Architecture Synthesis (Provisioning, Allocation)
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 12: February 21, 2007 Compute 2: Cascades, ALUs, PLAs.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 8: February 13, 2008 Retiming.
Logic Decomposition ECE1769 Jianwen Zhu (Courtesy Dennis Wu)
Overview Part 2 – Circuit Optimization 2-4 Two-Level Optimization
ECE Synthesis & Verification - Lecture 8 1 ECE 697B (667) Spring 2006 ECE 697B (667) Spring 2006 Synthesis and Verification of Digital Systems Multi-level.
State university of New York at New Paltz Electrical and Computer Engineering Department Logic Synthesis Optimization Lect19: Multi Level Logic Minimization.
Zvi Kohavi and Niraj K. Jha 1 Multi-level Logic Synthesis.
Two-Level Simplification Approaches Algebraic Simplification: - algorithm/systematic procedure is not always possible - No method for knowing when the.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 24: April 18, 2011 Covering and Retiming.
Two Level and Multi level Minimization
CALTECH CS137 Fall DeHon 1 CS137: Electronic Design Automation Day 5: October 7, 2005 Multi-level Synthesis.
Penn ESE353 Spring DeHon 1 ESE535: Electronic Design Automation Day 22: April 15, 2015 Multi-level Synthesis.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 10: February 18, 2015 Architecture Synthesis (Provisioning, Allocation)
UM EECS 270 Spring 2011 – Taken from Dr.Karem Sakallah Logic Synthesis: From Specs to Circuits Implementation Styles –Random –Regular Optimization Criteria.
2-1 Introduction Gate Logic: Two-Level Simplification Design Example: Two Bit Comparator Block Diagram and Truth Table A 4-Variable K-map for each of the.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 5: January 21, 2004 Multi-level Synthesis.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 7: February 3, 2002 Retiming.
Test Slide SAT MCAT GRE. CSE 370 Spring 2006 Introduction to Digital Design Lecture 5: Canonical Forms Last Lecture Logic Gates Different Implementations.
Multi-Level Logic Optimization. Multi-Level Logic Synthesis Two Level Logic : –Espresso –Programmable Logic Array (PLA) Multilevel Logic : –Standard Cell.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 23: April 20, 2015 Static Timing Analysis and Multi-Level Speedup.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 2: January 20, 2010 Universality, Gates, Logic Work Preclass Exercise.
Technology Mapping. 2 Technology mapping is the phase of logic synthesis when gates are selected from a technology library to implement the circuit. Technology.
Ch.5 Logic Design Standard Cell Design TAIST ICTES Program VLSI Design Methodology Hiroaki Kunieda Tokyo Institute of Technology 1.
CALTECH CS137 Spring DeHon 1 CS137: Electronic Design Automation Day 5: April 12, 2004 Covering and Retiming.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 15: March 4, 2002 Two-Level Logic-Synthesis.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 2: January 18, 2012 Universality, Gates, Logic Work Preclass Exercise.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 6: January 26, 2004 Sequential Optimization (FSM Encoding)
Boolean Functions 1 ECE 667 ECE 667 Synthesis and Verification of Digital Circuits Boolean Functions Basics Maciej Ciesielski Univ.
BDS – A BDD Based Logic Optimization System Presented by Nitin Prakash (ECE 667, Spring 2011)
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 17: March 11, 2002 Sequential Optimization (FSM Encoding)
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 20: April 4, 2011 Static Timing Analysis and Multi-Level Speedup.
CBSSS 2002: DeHon Universal Programming Organization André DeHon Tuesday, June 18, 2002.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 15: March 13, 2013 High Level Synthesis II Dataflow Graph Sharing.
ICS 252 Introduction to Computer Design Lecture 8 Winter 2004 Eli Bozorgzadeh Computer Science Department-UCI.
1 CS 352 Introduction to Logic Design Lecture 4 Ahmed Ezzat Multi-level Gate Circuits and Combinational Circuit Design Ch-7 + Ch-8.
State university of New York at New Paltz Electrical and Computer Engineering Department Logic Synthesis Optimization Lect18: Multi Level Logic Minimization.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 25: April 17, 2013 Covering and Retiming.
CS137: Electronic Design Automation
ESE535: Electronic Design Automation
ECE 667 Synthesis and Verification of Digital Systems
Topics Logic synthesis. Placement and routing..
ESE535: Electronic Design Automation
Technology Mapping I based on tree covering
VLSI CAD Flow: Logic Synthesis, Placement and Routing Lecture 5
CS137: Electronic Design Automation
Presentation transcript:

Penn ESE353 Spring DeHon 1 ESE535: Electronic Design Automation Day 6: February 5, 2008 Multi-level Synthesis

Penn ESE353 Spring DeHon 2 Today Multilevel Synthesis/Optimization –Why –Transforms -- defined –Division/extraction How we support transforms –Boolean Division Higher quality division

Penn ESE353 Spring DeHon 3 Multi-level General circuit netlist May have –sums within products –products within sum –arbitrarily deep y=((a (b+c)+e)fg+h)i

Penn ESE353 Spring DeHon 4 Why multi-level? ab(c+d+e)(f+g) abcf+abdf+abef+abcg+abdg+abeg 6 product terms vs. 3 gates: and4,or3,or2 Aside from Pterm sharing between outputs, –two level cannot share sub-expressions

Penn ESE353 Spring DeHon 5 Why Multilevel a xor b –a/b+/ab a xor b xor c –a/bc+/abc+/a/b/c+ab/c a xor b xor c xor d –a/bcd+/abcd+/a/b/cd+ab/cd+/ab/c/d+a/b/c/d+abc/d+/a/bc/d

Penn ESE353 Spring DeHon 6 Why Multilevel a xor b –a/b+/ab a xor b xor c –a/bc+/abc+/a/b/c+ab/c a xor b xor c xor d –a/bcd+/abcd+/a/b/cd+ab/cd +/ab/c/d+a/b/c/d+abc/d+/a/ bc/d Compare a xor b –x1=a/b+/ab a xor b xor c –x2=x1/c+/x1*c a xor b xor c xor d –x3=x2/d+x2*d

Penn ESE353 Spring DeHon 7 Why Multilevel a xor b –x1=a/b+/ab a xor b xor c –x2=x1/c+/x1*c a xor b xor c xor d –x3=x2/d+x2*d Multi-level –exploit common sub-expressions –linear complexity Two-level –exponential complexity

Penn ESE353 Spring DeHon 8 Goal Find the structure Exploit to minimize gates –Total (area) –In path (delay)

Penn ESE353 Spring DeHon 9 Multi-level Transformations Decomposition Extraction Factoring Substitution Collapsing [copy these to board so stay up as we move forward]

Penn ESE353 Spring DeHon 10 Decomposition F=abc+abd+/a/c/d+/b/c/d F=XY+/X/Y X=ab Y=c+d

Penn ESE353 Spring DeHon 11 Decomposition F=abc+abd+/a/c/d+/b/c/d –4 3-input input F=XY+/X/Y X=ab Y=c+d –5 2-input gates Note: use X and /X, use at multiple places

Penn ESE353 Spring DeHon 12 Extraction F=(a+b)cd+e G=(a+b)/e H=cde F=XY+e G=X/e H=Ye X=a+b Y=cd

Penn ESE353 Spring DeHon 13 Extraction F=(a+b)cd+e G=(a+b)/e H=cde 2-input: 4 3-input: 2 F=XY+e G=X/e H=Ye X=a+b Y=cd 2-input: 6 Common sub-expressions over multiple output

Penn ESE353 Spring DeHon 14 Factoring F=ac+ad+bc+bd+e F=(a+b)(c+d)+e

Penn ESE353 Spring DeHon 15 Factoring F=ac+ad+bc+bd+e –4 2-input, 1 5-input –9 literals F=(a+b)(c+d)+e –4 2-input –5 literals

Penn ESE353 Spring DeHon 16 Substitution G=a+b F=a+bc Substitute G into F F=G(a+c) –(verify) F=(a+b)(a+c)=aa+ab+ac+bc=a+bc useful if also have H=a+c? (F=GH)

Penn ESE353 Spring DeHon 17 Collapsing F=Ga+/Gb G=c+d F=ac+ad+b/c/d opposite of substitution –sometimes want to collapse and refactor –especially for delay optimization

Penn ESE353 Spring DeHon 18 Moves These transforms define the “moves” we can make to modify our network. Goal is to apply, usually repeatedly, to minimize gates –…then apply as necessary to accelerate design MIS/SIS –Applies to canonical 2-input gates –Then covers with target gate library (back to day2)

Penn ESE353 Spring DeHon 19 Division

Penn ESE353 Spring DeHon 20 Division Given: function (f) and divisor (p) Find: quotient and remainder f=pq+r E.g. f=abc+abd+ef, p=ab q=c+d, r=ef

Penn ESE353 Spring DeHon 21 Algebraic Division Use basic rules of algebra, rather than full boolean properties Computationally simple Weaker than boolean division f=a+bc p=(a+b) Algebra: not divisible Boolean: q=(a+c), r=0

Penn ESE353 Spring DeHon 22 Algebraic Division f and p are expressions (lists of cubes) p={a 1,a 2,…} h i ={c j | a i * c j  f} f/p = h 1  h 2  h 3 …

Penn ESE353 Spring DeHon 23 Algebraic Division Example (adv to alg.; work ex on board) f=abc+abd+de p=ab+e

Penn ESE353 Spring DeHon 24 Algebraic Division f and p are expressions (lists of cubes) p={a 1,a 2,…} h i ={c j | a i * c j  f} f/p = h 1  h 2  h 3 …

Penn ESE353 Spring DeHon 25 Algebraic Division Example f=abc+abd+de, p=ab+e p={ab,e} h1={c,d} h2={d} h1  h2={d} f/p=d r=f- p *(f/p) r=abc+abd+de-(ab+e)d r=abc

Penn ESE353 Spring DeHon 26 Algebraic Division Time O(|f||p|) as described –compare every cube pair Sort cubes first –O((|f|+|p|)log(|f|+|p|)

Penn ESE353 Spring DeHon 27 Primary Divisor f/c such that c is a cube f =abc+abde f/a=bc+bde is a primary divisor

Penn ESE353 Spring DeHon 28 Cube Free The only cube that divides p is 1 c+de is cube free bc+bde is not cube free

Penn ESE353 Spring DeHon 29 Kernel Kernels of f are –cube free primary divisors of f –Informally: sums w/ cubes factored out f=abc+abde f/ab = c+de is a kernel ab is cokernel of f to (c+de) –cokernels always cubes

Penn ESE353 Spring DeHon 30 Kernel Extraction Find c f = largest cube factor of f K=Kernel1(0,f/c f ) if (f is cube-free) –return(f  K) else –return(K) Kernel1(j,g) –R=g –N max index in g –for(i=j+1 to N) if (l i in 2 or more cubes) –c f =largest cube divide g/l i –if (forall k  i, l k  c f ) »R=R  KERNEL1(i,g/(l i  c f )) –return(R) Must be to Generate Non-trivial kernel Consider each literal for cofactor once (largest kernels will already have been found)

Penn ESE353 Spring DeHon 31 Kernel Extract Example (ex. on board; adv to return to alg.) f=abcd+abce+abef

Penn ESE353 Spring DeHon 32 Kernel Extraction Find c f = largest cube factor of f K=Kernel1(0,f/c f ) if (f is cube-free) –return(f  K) else –return(K) Kernel1(j,g) –R=g –N max index in g –for(i=j+1 to N) if (l i in 2 or more cubes) –c f =largest cube divide g/l i –if (forall k  i, l k  c f ) »R=R  KERNEL1(i,g/(l i  c f )) –return(R) Must be to Generate Non-trivial kernel Consider each literal for cofactor once (largest kernels will already have been found)

Penn ESE353 Spring DeHon 33 Kernel Extract Example (stay on prev. slide, ex. on board) f=abcd+abce+abef c f =ab f/c f =cd+ce+ef R={cd+ce+ef} N=6 a,b not present (cd+ce+ef)/c=e+d largest cube 1 Recurse  e+d R={cd+ce+ef,e+d} only 1 d (d+ce+ef)/e=c+f Recurse  c+f R={cd+ce+ef,e+d,c+f}

Penn ESE353 Spring DeHon 34 Factoring Gfactor(f) if (terms==1) return(f) p=CHOOSE_DIVISOR(f) (h,r)=DIVIDE(f,p) f=Gfactor(h)*Gfactor(p)+Gfactor(r) return(f) // factored

Penn ESE353 Spring DeHon 35 Factoring Trick is picking divisor –pick from kernels –goal minimize literals after resubstitution Re-express design using new intermediate variables Variable and complement

Penn ESE353 Spring DeHon 36 Extraction Identify cube-free expressions in many functions (common sub expressions) Generate kernels for each function select pair such that k1  k2 is not a cube new variable from intersection –v= k1  k2 update functions (resubstitute) –f i = v*(f i /v)+ r i –(similar for common cubes)

Penn ESE353 Spring DeHon 37 Extraction Example X=ab(c(d+e)+f+g)+g Y=ai(c(d+e)+f+j)+k

Penn ESE353 Spring DeHon 38 Extraction Example X=ab(c(d+e)+f+g)+g Y=ai(c(d+e)+f+j)+k d+e kernel of both L=d+e X=ab(cL+f+g)+h Y=ai(cL+f+j)+k

Penn ESE353 Spring DeHon 39 Extraction Example L=d+e X=ab(cL+f+g)+h Y=ai(cL+f+j)+k kernels:(cL+f+g), (cL+f+j) extract: M=cL+f X=ab(M+g)+h Y=ai(M+f)+h

Penn ESE353 Spring DeHon 40 Extraction Example L=d+e M=cL+f X=ab(M+g)+h Y=ai(M+j)+h no kernels common cube: aM N=aM M=cL+f L=d+e X=b(N+ag)+h Y=i(N+aj)+k

Penn ESE353 Spring DeHon 41 Extraction Example N=aM M=cL+f L=d+e X=b(N+ag)+h Y=I(N+aj)+k Can collapse –L into M into N –Only used once Get larger common kernel N –maybe useful if components becoming too small for efficient gate implementation

Penn ESE353 Spring DeHon 42 Resubstitution Also useful to try complement on new factors f=ab+ac+/b/cd X=b+c f=aX+/b/cd /X=/b/c f=aX+/Xd …extracting complements not a direct target

Penn ESE353 Spring DeHon 43 Good Divisors? Key to CHOOSE_DIVISOR in GFACTOR Variations to improve –e.g. rectangle covering (Devadas 7.4)

Penn ESE353 Spring DeHon 44 Boolean Division

Penn ESE353 Spring DeHon 45 Don’t Care Mentioned last time Structure of logic restricts values intermediates can take on

Penn ESE353 Spring DeHon 46 Don’t Care Example e=/a/b g=/c/d f=/e/g e=0, a=0, b=0 cannot occur DC: e(a+b)+/e/a/b

Penn ESE353 Spring DeHon 47 Satisfiability DC In general:  z=F(x,y)  z/F(x,y) + /zF(x,y) is don’t care Satisfiablility DC one of two types (SDC)

Penn ESE353 Spring DeHon 48 Observability DC If output F not differentiated by input y, –then don’t care value of y –i.e. input conditions where (F y =F /y ) ODC =  (F y =F /y ) –(product over all outputs)

Penn ESE353 Spring DeHon 49 Don’t Care Optimization Select a node in Boolean network Compute ODC for all outputs wrt node Compute SDC in terms of local inputs Minimize wrt ODC  SDC

Penn ESE353 Spring DeHon 50 Boolean Division f//p assuming sup(p)  sup(f) add input P to f (for p) new function F = f//p –DC-set D=P/p+/Pp –ON-set f  /D –OFF-set /(f  D) minimize F for minimum literals in sum- of-products (last time)

Penn ESE353 Spring DeHon 51 Boolean Division (check) F ON-set f  /D D=P/p+/Pp /D = Pp+/P/p F = f  /D = F(Pp+/P/p) f = F(Pp+/P/p)p = Fp –Goal since want F=f//p

Penn ESE353 Spring DeHon 52 Boolean Division Example f=abc+a/b/c+/ab/c+/a/bc p=ab+/a/b F-DC=ab/P+/a/b/P+/abP+a/bP F-On=abcP+/a/bcP+/ab/cP+a/b/c/P After minimization get:  F=cP+/c/P  P=ab+/a/b

Penn ESE353 Spring DeHon 53 Boolean Division Trick is finding boolean divisors Not as clear how to find –(not as much work on) Can always use boolean division on algebraic divisors –give same or better results

Penn ESE353 Spring DeHon 54 Summary Want to exploit structure in problems to reduce (contain) size –common subexpressions –structural don’t cares Identify component elements –decomposition, factoring, extraction Division key to these operations

Penn ESE353 Spring DeHon 55 Admin

Penn ESE353 Spring DeHon 56 Big Ideas Exploit freedom –form –don’t care Exploit structure/sharing –common sub expressions Techniques –Iterative Improvement –Refinement/relaxation