1E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Deuterium retention in Tore Supra long discharges Interpreting the particle balance Particle retention.

Slides:



Advertisements
Similar presentations
1 Th LoarerGas balance and fuel retention – EU TF on PWI – 13 November 2006 Th Loarer with contributions from C. Brosset 1, J. Bucalossi 1, P Coad 2, G.
Advertisements

Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
Th Loarer - SEWG on Fuel retention – JET, July Th Loarer with special thanks to S Brezinsek, J Bucalossi, I Coffey, G Esser, S Gruenhagen.
SEWG Meeting HIGH-Z, Ljubljana, October 2009 I. Tungsten distribution on limiters after WF 6 injection in TEXTOR II. SEM and EDX of Melted Tungsten Rods.
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
Kazuyoshi Sugiyama, SEWG meeting on Fuel retention, Garching, July Contribution of Boron on the D retention in the AUG full-W wall regime Max-Planck-Institut.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
Tungsten distribution on limiters after WF 6 injection in TEXTOR M. Rubel, D. Ivanova Alfv é n Laboratory, Royal Institute of Technology, Association EURATOM.
1TPL Dismantling Project Review 08/12/06 Bernard Pégourié TORE SUPRA Association EURATOM-CEA D program: Specific experiments before dismantling Purpose:
1 Th LoarerGas balance and fuel retention – EU TF on PWI – 13 November 2006 Th Loarer with contributions from C. Brosset 1, J. Bucalossi 1, P Coad 2, G.
V.Philipps, SEWG Gas balance and fuel removal, JET, , Association EURATOM – FZJ Effect of disruptions on fuel release from JET walls V. Philipps,
1E. TsitronePWI TF meeting 17-19/10/2005 Euratom Plasma Wall Interactions : Tore Supra recent results E. Tsitrone for Tore Supra team With special thanks.
TFE Th Loarer – SEWG – 12 September Euratom Th Loarer V Philipps 2, J Bucalossi 1, D Brennan 3, J Brzozowski 4, N Balshaw 3, R Clarke 3, G Esser.
1B. PégouriéDITS progress report 27/04/07 Euratom EXPERIMENTAL CAMPAIGN No reliable estimation of the wall inventory WI ~ ??? D atoms (Tsitrone,
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
J. Roth, EU PWI TF, SEWG Fuel Retention, Garching, July 19, 2010 Report on: WP10-PWI /IPP/PS Multi machine scaling of fuel retention for ITER Validation.
1/18 TORE SUPRA Association Euratom-Cea B. Pégourié – SEWG Gaz Balance & Fuel Retention - JET – July 22-23, 2008 Tore Supra – repetitive long discharges.
P. Pelicon, I. Čadež, S. Markelj, Z. Rupnik, P. Vavpetič, N. Grlj Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana, Slovenia.
1SEWG Fuel removal - Glow improvement for JET D. Douai22-23 July 2008 EFDA Task Glow discharge improvement for JET D. Douai 1, D. Garnier 1, S. Brémond.
1 TORE SUPRA Association Euratom-Cea A. Ekedahl et al Progress Report DITS project : 13 July 2007 Operational Limits during the TPL Deuterium Loading Experiment.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
6 th EU PWI TF Meeting Madrid, Oct Tritium Inventory in ITER: Laboratory data and extrapolation from tokamaks Th Loarer, J Roth, S Brezinsek, A.
1TPL dismantling project review C. Brosset TORE SUPRA Association EURATOM-CEA 2006/12/08 TPL dismantling project review D program : analysis for D content,
121 st IAEA Fusion Energy Conference, Chengdu TORE SUPRA Association Euratom-Cea M. Chatelier17 October 2006 Integration of High Power, Long Pulse Operation.
Complex chemical interactions of lithium, deuterium, and oxygen on lithium-coated graphite PFC surfaces C.N. Taylor1, B. Heim1, J.P. Allain1, C. H. Skinner2,
Modeling hydrocarbon generation / transport In fusion experiments John Hogan Fusion Energy Division Oak Ridge National Laboratory First Meeting Co-ordinated.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
1 DIII-D Edge physics overview A.Leonard for the Plasma Boundary Interface Group Presented at the PFC Meeting UCLA, August 4-6, 2010.
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
Co-deposition of deuterium and impurities in plasma-wall interaction simulators Marek Rubel a, Per Petersson a, Arkadi Kreter b a Alfvén Laboratory, KTH,
G. De Temmerman ITPA 10 meeting, Moscow, April 06 1 Influence of material choice on the deposition/erosion mechanisms affecting optical reflectivity of.
1 G.T. Hoang, 20th IAEA Fusion Energy Conference Euratom Turbulent Particle Transport in Tore Supra G.T. Hoang, J.F. Artaud, C. Bourdelle, X. Garbet and.
Physics of fusion power
A. Canton, S. Dal Bello 13 th IEA/RFP Workshop Density control in RFX-mod A. Canton, S. Dal Bello Consorzio RFX, Padova, Italy.
Euratom J. Jacquinot, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1/11/2004 Euratom Steady-State operation of Tokamaks: Key Physics and Technology.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
1Th LoarerGas balance and fuel retention – IAEA Chengdu – 18 October 2006 TEC Euratom Th Loarer with contributions from C. Brosset 1, J. Bucalossi 1, P.
Member of the Helmholtz Association OS2010| Institute of Energy Research–Plasma Physics | Association EURATOM – FZJ Spectroscopy on laser released particles.
1 Association Euratom-Cea TORE SUPRA Tore Supra “Fast Particles” Experiments LH SOL Generated Fast Particles Meeting Association Euratom IPP.CR, Prague.
ASIPP In-time retention evaluation by particle balance analysis on HT-7 Y. YANG*, and HT-7 team Institute of Plasma Physics, Chinese Academy of Sciences.
Sachiko Suzuki 1, Akira Yoshikawa 1, Hirotada Ishikawa 1, Yohei Kikuchi 1, Yuji Inagaki 1, Naoko Ashikawa 2, Akio Sagara 2, Naoaki Yoshida 3, Yasuhisa.
ASIPP HT-7/ EAST Overview of PSI activities at ASIPP G. –N. Luo, J. G. Li, and PSI Group Institute of Plasma Physics, Chinese Academy of Sciences P. O.
PSI 2008 Toledo E.Gauthier TORE SUPRA Association EURATOM-CEA 26-30/05/2008 Progress in diagnostics for characterization of plasma-wall interaction in.
Tritium Retention in Graphite and Carbon Composites Sandia National Laboratories Rion Causey Sandia National Laboratories Livermore, CA
On the use of LIBS to determine the fractional abundances of carbon ions in the laser plasma plume M. Naiim Habib 1, Y. Marandet 2, L. Mercadier 3, Ph.
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, R. P. Doerner, G. De Temmerman, M.J. Baldwin, D. Nishijima Center for Energy Research, University.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
Photonic T removal techniques in the EU G Counsell 1, P Coad 1, C Grisolia 2, A. Semerok 3, A Widdowson 1 1 EURATOM/UKAEA Fusion Association, Culham Science.
ASIPP In-time retention evaluation by particle balance analysis on HT-7 Y. YANG*, and HT-7 team Institute of Plasma Physics, Chinese Academy of Sciences.
Background Long term tritium retention is one of the most critical issues for ITER during the tritium phase. It is mandatory to evaluate the long term.
1 Th LoarerFuel retention in tokamaks – PSI Conference May - Toledo Euratom Th Loarer with special thanks to N Bekris, S Brezinsek, C Brosset, J.
Gas inlet position References Experiment 1) W sputtering experiment Aim: study of W erosion for different plasma conditions by aim of spectroscopy reference.
T Loarer – TFE meeting – 20 February TORE SUPRA Association Euratom-Cea Gas Balance - fuel retention in JET T Loarer, J Bucalossi, D Brennan*, G.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
O-36, p 1(10) G. Arnoux 18 th PSI, Toledo, 26-30/05/2008 Divertor heat load in ITER-like advanced tokamak scenarios on JET G.Arnoux 1,(3), P.Andrew 1,
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
GOLEM operation based on some results from CASTOR
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
1 Differential Residual Gas Analysis in the HT-7 Tokamak J.S Hu and HT-7 vacuum group Institute of Plasma Physics, Chinese Academic of Science, Hefei,
J. Roth: ITPA SOL/DIV, Avila, Jan Prediction of ITER T retention levels with W PFCs J. Roth, and the SEWG Fuel retention of the EU Task Force on.
Dynamic fuel retention and release under ITER like wall conditions in JET V. Philipps 1, T. Loarer 2, M. Freisinger 1, H.G.Esser 1, S. Vartanian 2, U.
TFE 3/2/2004 – Fuel retention in JET - J. Bucalossi / T. Loarer Assessment of fuel retention in JET : Contingency – 2 shifts on 6 th of february E. Tsitrone.
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
LH Generated Hot Spots on the JET Divertor
Fuel Retention Studies with the ITER-like Wall in JET
Multiscale modeling of hydrogen isotope transport in porous graphite
Presentation transcript:

1E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Deuterium retention in Tore Supra long discharges Interpreting the particle balance Particle retention during long discharges Particle recovery (after shot, glows, disruptions) Experimental results E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin 2, Y. Corre, E. Dufour, A. Géraud, C. Grisolia, A. Grosman, J. Gunn, J. Hogan 3, C. Lowry, R. Mitteau, V. Philips 4, D. Reiter 4, J. Roth 5, M. Rubel 6, R. Schneider 7, M. Warrier 7 Association Euratom-CEA, CEA Cadarache, CEA-DSM-DRFC, F Saint Paul-lez-Durance, France 2 : LPIIM, UMR 6633, Université de Provence, Centre Saint-Jérôme Marseille cedex 20 3 : Fusion Energy Division, ORNL, Oak Ridge, TN USA 4 : Institut für Plasmaphysik, FZ Jülich, Euratom Association, D Jülich, Germany 5 : Max Planck Institute für Plasmaphysik, Euratom Association, Boltzmannstr. 2, D Garching Germany 6 : Alfven Laboratory, Royal Institute of Technology, Association Euratom VR, Stockholm, Sweden 7 : Max Planck Institute für Plasmaphysik, Euratom Association, Teilinst. Greifswald, Wendelsteinstrasse 1, D Greifswald Germany

2E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Tore Supra : the CIEL configuration Long pulse : LH driven discharge at V loop ~ 0, low plasma current/density  low density hot edge plasma (Te ~ 100 eV at the LCFS) Toroidal pump limiter (TPL) Bumpers Outboard movable limiter 15 m 2 of carbon plasma facing components Active cooling : stationary PFC temperature from 120°C (cooling loop) up to 250°C on the limiter for long pulses Plasma loaded zones Shadowed zones CCD imaging of the TPL Active pumping : neutralisers below TPL

3E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Phase 1 Phase 2 Particle retention in long discharges No saturation of in vessel retention after 15 minutes of cumulated plasma time Phase 2 Constant retention rate (= 50% of injected flux) No saturation after 6 minutes Identical shot to shot behaviour Phase 1 (~ 100 s) Decreasing retention rate In vessel inventory  shot duration in phase 2 (I max = D for 6 minutes)

4E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Phase 1 Phase 2 Retention phase 1 x Particle recovery after shot Recovery > plasma content : the wall releases particles x Recovery correlated to retention in phase 1 : transient retention mechanism Small fraction recovered after shot ~ 100 s

5E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Particle recovery after glow discharge and disruptions Recovery after He glow discharge (6 hours) : D < I max Independent of the quantity trapped during the day of experiment Recovery after disruption : up to D < I max Large scatter at given Ip : machine history dependent ? (highest exhaust in start up phase) Threshold in Ip : Ip < 0.8 MA : ~ after shot recovery Ip > 0.8 MA : increase with Ip  dissipated energy high enough to heat D rich deposited layers [D. Whyte, PSI 2004]

6E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Sample analysis : D content Outboard limiter Cold deposits (~ 120 °C) D/C ~ 10 % N D ~ at /m 2 /  m * S * d TPL Neutraliser finger Hot deposits (> 500°C) D/C ~ 1 % N D ~ at/m 2 * S [C. Brosset, PSI 2004] TPL deposits analysis still in progress Cold deposits in shadowed areas  D reservoir Several  ms Shadowed < 1  m Plasma facing Several  ms Carbon deposits Net deposition zone Net erosion zone (main plasma interaction area) Net deposition zones

7E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Interpreting the particle balance BUT : does not explain shot to shot behaviour unless very strong diffusion takes place Phase 1 Progressive saturation of bombarded surfaces (D +, D 0 ) until C Dmax reached Implantation D  C D +, D 0 d imp < 0.1  m Carbon D+D+ D0D0 D2+D2+ D2D2 TPL Bumpers [E. Tsitrone, PSI 2004] Saturation time : from ~ 1s (TPL) to ~ 100 s (bumpers)

8E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Phase 1 Interpreting the particle balance Outgassing after shot ~ phase 1 duration ( ~ 100s) : ok with filling / emptying the porosity reservoir Good candidate for phase 1 BUT : extrapolation from lab to tokamak environment (temperature) TS deposited layers : 100 times more porous than original CFC [P. Roubin, PSI 2004] Filling the CFC porosity D 2, D 0 Adsorption M. Warrier et al., Contrib. Plasma Phys. 44, No. 1-3, (2004) Adsorption : weak bond (  chemical bond)  ok for transient mechanism Extrapolation from lab exp (77 K) : D/g deposits  0.5 g enough to account for phase D

9E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Interpreting the particle balance Phase ok with Zeff, ok with low net erosion on TPL (high local redeposition), ok with layers growing rate C/s CD 4 /s Distant redeposition (TPL shadowed areas, neutralisers, outboard limiter …) C/s (phys. + self) CD 4 /s (chem.) Erosion C 6+ /s Local redeposition Preliminary estimates of carbon erosion sources physical + chemical sputtering by D + and D 0 self sputtering by C n+ (assumed 5% C in D + flux) Codeposition : Carbon deposits C, D CxDyCxDy physical sputtering chemical sputtering  carbon balance roughly coherent

10E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Interpreting the particle balance Phase If D/C = 0.1 : need C/s of net redeposition : high erosion/redeposition on TPL ( > 100  m on 4 m 2 ): not observed  No coherence between D retention rate / D/C ratio / C erosion/redeposition D rich film created during the discharge subsequently depleted in D (glows, disruptions) ? Hard to explain the retention rate in phase 2 with codeposition alone 1/3 of produced CD 4 trapped : but high D/C ratio film : not observed D/s C/s CD 4 /s Distant redeposition (TPL shadowed areas, neutralisers, outboard limiter …) C/s CD 4 /s Erosion C 6+ /s Local redeposition Codeposition : D balance

11E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Summary Phase 2Phase 1 D implantation in C : progressive saturation but not transient D adsorption in porosity : good candidate, but to be assessed in tokamak environment Codeposition of D and C : Can hardly explain the retention rate in phase 2 D content sample analysis : D mainly in cold deposits in shadowed areas (120 °C) Missing D not found yet but still a lot to investigate (TPL deposits, pumping ducts …) D recovery (He glow discharge, disruptions) < in vessel inventory accumulated in a single long discharge D retention : no wall saturation after 15 minutes in high T e / low n e edge plasma Transient retention : recovered after shot Permanent retention : NOT recovered after shot

12E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom

13E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Tore Supra : well equipped for particle balance Gas injection : manometers Active pumping : 10 neutralisers with turbo- molecular pumps equipped with 20 pressure gauges (1 in vertical port, 1 at the pump) + 2 Penning gauges (D 2 /He) + mass spectrometer 2 pressure gauges in the chamber (equatorial ports) pressure gauges in primary exhaust system Systematic calibration procedure : calibrated gas injection in the chamber with/without pumps activated D + to pumps dN p /dt =  inj –  pump –  in vessel

14E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Effect of active pumping Pumping on Active pumping on Tore Supra : no effect on dynamic wall retention but offset on gas injection Pumping off Same wall inventory Shifted gas injection

15E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom LH power (MW) Injected flux (Pa.m 3 /s) Extracted Flux (Pa.m3/s) Gas Puffing Vessel Inventory TPL exhaust Vessel Exhaust Plasma Content x100 Inventories (Pa.m 3 ) s Time (s) Shot Particle balance sensitive to LH power loss dN p /dt =  inj –  pump –  in vessel

16E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Shot  T (°C) before/after disruption (20 ms) Disruption heats deposited layers Net erosion zone (main plasma interaction area) Thickest deposition zone (shadowed/plasma area) Moderate deposition zone (plasma interaction area)  T > 220 °C Plasma loaded zones Shadowed zones CCD imaging of the TPL

17E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom T°C #33067 (t-20ms)  T #33067 (disruption) IR shows cold deposits

18E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom D inventory in the machine Estimated D inventory in the machine : From analysed samples : ~ D (80% in cold deposits) From non analysed samples (TPL surface) : ~ D (most of it in TPL shadowed zones) Total : ~ D Estimated D inventory from particle balance integrated over a campaign: From averaged net retention rates : ~ D Glow discharge : ~ D Disruptions : ~ D Total : ~ D  No firm conclusion can be drawn on D balance BUT : surface/depth of layers difficult to assess, samples still to be analysed BUT : retention rate scenario dependent, not all disruptions recorded, glow D 2 not accounted, cleaning discharges …

19E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Deuterium retention in Tore Supra long discharges Interpreting the particle balance Particle retention during long discharges Particle recovery (after shot, glows, disruptions) Experimental results E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin 2, Y. Corre, E. Dufour, A. Géraud, C. Grisolia, A. Grosman, J. Gunn, J. Hogan 3, C. Lowry, R. Mitteau, V. Philips 4, D. Reiter 4, J. Roth 5, M. Rubel 6, R. Schneider 7, M. Warrier 7 Association Euratom-CEA, CEA Cadarache, CEA-DSM-DRFC, F Saint Paul-lez-Durance, France 2 : LPIIM, UMR 6633, Université de Provence, Centre Saint-Jérôme Marseille cedex 20 3 : Fusion Energy Division, ORNL, Oak Ridge, TN USA 4 : Institut für Plasmaphysik, FZ Jülich, Euratom Association, D Jülich, Germany 5 : Max Planck Institute für Plasmaphysik, Euratom Association, Boltzmannstr. 2, D Garching Germany 6 : Alfven Laboratory, Royal Institute of Technology, Association Euratom VR, Stockholm, Sweden 7 : Max Planck Institute für Plasmaphysik, Euratom Association, Teilinst. Greifswald, Wendelsteinstrasse 1, D Greifswald Germany  minimize the retention rate  optimize the recovery techniques ITER in vessel T inventory limit :  (retention rate - recovery rate) dt < 350 g

20E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Phase 1 Phase 2 Particle retention in long discharges dN p /dt =  inj –  pump –  in vessel No saturation of in vessel retention after 15 minutes of cumulated plasma time Phase 2 Constant retention rate (= 50% of injected flux) No saturation after 6 minutes Identical shot to shot behaviour Phase 1 (~ 100 s) Decreasing retention rate In vessel inventory  shot duration in phase 2 (I max = D for 6 minutes)

21E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Sample analysis : D content Outboard limiter Cold deposits (~ 120 °C) D/C ~ 10 % N D ~ at /m 2 /  m * S * d TPL Neutraliser finger Hot deposits (> 500°C) D/C ~ 1 % N D ~ at/m 2 * S [C. Brosset, PSI 2004] TPL deposits analysis still in progress Cold deposits in shadowed areas  D reservoir Several  ms Shadowed < 1  m Plasma facing Several  ms Carbon deposits Net deposition zone Net erosion zone (main plasma interaction area) Moderate deposition zone (plasma interaction area) Thickest deposition zone (shadowed area) D content in analysed samples < D inventory over campaign

22E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Interpreting the particle balance Phase Codeposition : Carbon deposits C, D CxDyCxDy Estimates of carbon erosion sources ok with Zeff, ok with high redeposition (low net erosion on TPL), ok with layers growing rate  carbon balance roughly coherent C/s CD 4 /s Distant redeposition (TPL shadowed areas, neutralisers, outboard limiter …) C/s CD 4 /s Erosion C 6+ /s Local redeposition C source underestimated : no synergy D + /D 0, no localised hot Tsurf, no LH accelerated e-

23E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Sample analysis : D content Net erosion zone Plasma facing < 1  m Carbon substrate Neutraliser finger Outboard limiter Cold deposits (~ 120 °C) D/C ~ 10 % N D ~ at /m 2 /  m * S * d TPL Hot deposits (> 500°C) D/C ~ 1 % N D ~ at/m 2 * S [C. Brosset, PSI 2004] TPL deposits analysis still in progress Cold deposits in shadowed areas Several  ms Shadowed hot deposits cold deposits < 1  m Plasma facing Several  ms Carbon deposits Net deposition zone

24E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Phase 1 Interpreting the particle balance p vessel S outgas dp vessel /dt = S outgas – S eff p vessel Recovery ~ phase 1 duration : ok with filling / emptying the porosity reservoir Good candidate for phase 1 BUT : extrapolation from lab to tokamak environment (temperature, pressure, incident particles) Filling the CFC porosity TS deposited layers : 100 times more porous than virgin CFC [P. Roubin, PSI 2004] D 2, D 0 Adsorption M. Warrier et al., Contrib. Plasma Phys. 44, No. 1-3, (2004) Adsorption : weak bond (  chemical bond)  ok for transient mechanism Extrapolation from lab exp : D/g deposits  0.5 g enough to account for phase D

25E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Deuterium retention in Tore Supra long discharges Interpreting the particle balance Particle retention during long discharges Particle recovery (after shot, glows, disruptions) Experimental results E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin 2, Y. Corre, E. Dufour, A. Géraud, C. Grisolia, A. Grosman, J. Gunn, J. Hogan 3, C. Lowry, R. Mitteau, V. Philips 4, D. Reiter 4, J. Roth 5, M. Rubel 6, R. Schneider 7, M. Warrier 7 Association Euratom-CEA, CEA Cadarache, CEA-DSM-DRFC, F Saint Paul-lez-Durance, France 2 : LPIIM, UMR 6633, Université de Provence, Centre Saint-Jérôme Marseille cedex 20 3 : Fusion Energy Division, ORNL, Oak Ridge, TN USA 4 : Institut für Plasmaphysik, FZ Jülich, Euratom Association, D Jülich, Germany 5 : Max Planck Institute für Plasmaphysik, Euratom Association, Boltzmannstr. 2, D Garching Germany 6 : Alfven Laboratory, Royal Institute of Technology, Association Euratom VR, Stockholm, Sweden 7 : Max Planck Institute für Plasmaphysik, Euratom Association, Teilinst. Greifswald, Wendelsteinstrasse 1, D Greifswald Germany  minimize the retention rate  optimize the recovery techniques ITER in vessel T inventory limit :  (retention rate - recovery rate) dt < 360 g

26E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Particle recovery after glow discharge and disruptions Recovery after He glow discharge (6 hours) : D < I max Independent of the quantity trapped during the day of experiment ~ desaturation of 15 m 2 of carbon implanted with D for 300 eV incident He Recovery after disruption : up to D < I max Large scatter at given Ip : machine history dependent ? (highest exhaust in start up phase) Threshold in Ip : Ip < 0.8 MA : ~ after shot recovery Ip > 0.8 MA : increase with Ip  dissipated energy high enough to outgas deposited layers [D. Whyte, PSI 2004]

27E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Interpreting the particle balance BUT : does not explain shot to shot behaviour unless very strong diffusion takes place Phase 1 Progressive saturation of bombarded surfaces (D +, D 0 ) at C Dmax = f(E inc, T surf ) Implantation D  C D +, D 0 d imp < 0.1  m Carbon D+D+ D0D0 D2+D2+ D2D2 TPL Bumpers [E. Tsitrone, PSI 2004] Saturation time : from ~ 1s (TPL) to ~ 100 s (bumpers) Implantation of D 0 in bumpers