Recent results from the Hall C hypernuclear program Recent results from the Hall C hypernuclear program - JLab E01-011 - Osamu Hashimoto Tohoku University.

Slides:



Advertisements
Similar presentations
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
Advertisements

Λ hypernuclea r spectroscop y at Jefferson Lab The 3 rd Korea-Japan on Nuclear and Hadron Physics at J-PARC, at Inha University in Korea 2014/3/20 – 2014/3/21.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
1/12/2007DNP Town Meeting, Joerg Reinhold (FIU) Hypernuclear Spectroscopy Joerg Reinhold Florida International University for the Jefferson Lab Collaborations.
Satoshi N. Nakamura, Tohoku University Study of Lambda hypernuclei with electron beams JLab HKS-HES collaboration, 2009, JLab Hall-C On behalf of JLab.
Lulin Yuan / Hampton University For HKS-HES collaboration Hall C Summer meeting, August 7, 2009.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
Spectroscopic Investigation of P-shell Λ hypernuclei by the (e,e'K + ) Reaction - Analysis Update of the Jlab Experiment E Chunhua Chen Hampton.
Nov.29,2011/HU group meeting Spectroscopic Investigation of P-shell Λ hypernuclei by (e,e'K + ) - Analysis Updated Status - Chunhua Chen Hampton Universithy.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
The angular dependence of the 16 O(e,e’K + ) 16  N and H(e,e’K + )  F. Garibaldi – Jlab December WATERFALL The WATERFALL target: reactions on.
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
Decade of Hypernuclear Physics at JLAB and Future Prospective in 12 GeV Era Liguang Tang Department of Physics, Hampton University & Jefferson National.
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
New (e,e ’ K+) hypernuclear spectroscopy with a high-resolution kaon spectrometer Osamu Hashimoto Department of Physics, Tohoku University December 4-7.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
A Study with High Precision on the Electro- production of  and  -hypernuclei in the Full Mass Range Liguang Tang On behalf of the unified JLab hypernuclear.
Hypernuclear Production with Hadronic and Electromagnetic Probes Radhey Shyam Saha Institute of Nuclear Physics, Kolkata, India Z.Zt. Institut f. Theo.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Spectroscopy of  -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB FB18, Brazil, August 21-26, 2006.
Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB) July 31 & Aug. 1, 2009, OCPA6 Satellite Meeting on Hadron.
Osamu Hashimoto Department of Physics Tohoku University APCTP Workshop on Strangeness Nuclear Physics (SNP'99) February 19-22, 1999 Reaction spectroscopy.
Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory (JLAB) Sphere/Core-to-Core meetings, September 4-6, 2010, Prague,
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
The SKS Spectrometer and Spectroscopy of Light  Hypernuclei (E336 and E369) KEK PS Review December 4-5, 2000 Osamu Hashimoto Tohoku University.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Spectroscopic Investigation of  hypernuclei in the wide mass region using the (e,e’K + ) reaction (Extension request of the currently running E
Hypernuclei Production Experiment E05115 at Jefferson Laboratory by the (e,e’K + ) Reaction Chunhua Chen March 31, 2012  Introduction  Experimental Setup.
- motivation - angular distribution - the elementary reaction -kinematics and counting rates - beam time request - the apparatus - summary and conclusion.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Study of Neutron-Rich  Hypernuclei Tomokazu FUKUDA Osaka Electro-Communication University 2013/09/091EFB 22.
1 E05-115: Third Generation Hypernuclear Experiment Hall C User Meeting January 18th, 2008 (Fri) Yu Fujii Tohoku Univ. E : Spectroscopic investigation.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
Study of Light Hypernuclei by Pionic Decay at JLAB Liguang Tang Other spokespersons: A. Margaryan, L. Yuan, S.N. Nakamura, J. Reinhold Collaboration: From.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
JLab における (e,e'K + ) 反応を用い た 精密ラムダハイパー核分光実験 東北大学理学研究科 後神 利志 Toshiyuki Gogami Strangeness 2010 at KEK JLab Hall-C.
Λ hypernuclear spectroscopic experiment via (e,e’K + ) at JLab Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab Hall-C in May 2009.
Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory (JLAB) PAC35, January 25, 2010, JLAB Mesonic Decay inside.
Hypernuclei,  – N interaction  Electroproduction of hypernuclei E experiment UPDATE  Experimental equipment and setup Kaon identification  RICH.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Electrophoto-production of strangeness and  Hypernuclei Osamu Hashimoto Department of Physics, Tohoku University October 21-22, 2004 Jeju University.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Lulin Yuan / Hampton University 2008 APS April Meeting St. Louis Missouri, Apr. 12, 2008.
18th Indian-Summer School for the next generation (e,e’K + ) hypernuclear experiment, JLab E Department of Physics, Tohoku Univ. Japan D. Kawama.
Study of light hypernuclei by the (e,e’K + ) reaction Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab E collaboration, 2009, JLab.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
Spectroscopic study of  hypernuclei in the medium-heavy mass region and p-shell region using the (e,e’K + ) reaction (PR08-002) JLab PAC33 16, Jan, 2008.
Hypernuclear Spectroscopy with Electron Beams
Florida International University, Miami, FL
The First
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
Progress on J-PARC hadron physics in 2016
Spectroscopy of -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB SNP2006, Zhangjiajie, Sept.
Study of Light Hypernuclei by Pionic Decay at JLAB
Presentation transcript:

Recent results from the Hall C hypernuclear program Recent results from the Hall C hypernuclear program - JLab E Osamu Hashimoto Tohoku University HYP2006 Mainz, October 11-14, 2006

E hypernuclear collaboration – –Y. Fujii, O. Hashimoto (Spokesperson), D. Honda, M. Kaneta, F. Kato, D. Kawama, A. Matsumura, N. Maruyama,T. Miyoshi, S.N. Nakamura (Spokesperson), H. Nomura, K.Nonaka,A. Ohtani, Y. Okayasu, M. Sumihama, H. Tamura (Tohoku U) – –S. Kato (Yamagata U) – –T. Takahashi, Y. Sato, H. Noumi (KEK) – –O.K. Baker, M. Christy, L. Cole, P. Gueye, C. Keppel, L. Tang (Spokesperson), L. Yuan (Hampton U) – –B. Beckford, S. Gullon, P. Markowitz, J. Reinhold (Spokesperson), C. Vega (FlU) – –Ed.V. Hungerford, K. Lan, N. Elhayari, N. Klantrains, Y. Li,S. Radeniya, Murad, V. Rodrigues (Houston) – –R. Carlini, R. Ent, H. Fenker, T. Horn, D. Mack, G. Smith, W. Vulcan, S.A. Wood, C. Yan (JLab) – –N. Simicevic, S. Wells (Louisiana Tech) – –L. Gan (North Carolina, Wilmington) – –A. Ahmidouch, S. Danagoulian, A. Gasparian (North Carolina A&T) – –M. Elaasar (New Orleans) – –R. Asaturyan, H. Mkrtchyan, A. Margaryan, S. Stepanyan, V. Tadevosyan (Yerevan) – –D. Androic, T. Petkovic, M. Planinic, M. Furic, T. Seva (Zagreb) – –T. Angelescu (Bucharest) – –V.P. Likhachev (Sao Paulo) – –M. Ahmed (Duke) – –B. Hu, Y. Song, C. Yang (Lanzhou)

1989 The first hypernuclear experiment in 1989 The first hypernuclear experiment in Hall C, E89-009, approved 1994 Hypernuclear experiment in 1994 Hypernuclear experiment in Hall A, E94-107, approved 1995 JLab started physics experiments 1997 Hall C 2 nd generation experiment, E97-008, approved, later updated as E The first (e,e’K + ) hypernuclear spectroscopy, E89-009, carried out High resolution kaon spectrometer (HKS) for the E experiment under construction Hypernuclear experiment in Hall A, E94-107, carried out Hypernuclear experiment in Hall A, E94-107, carried out The second generation experiment in Hall C, E01-011, carried out The 3 rd generation hypernuclear experiment in Hall C, E05-115, approved New electron spectrometer for the 3 rd generation experiment, E05-115, New electron spectrometer for the 3 rd generation experiment, E05-115, under construction under construction 2008 The E experiment will be ready for beam in Hall C 2008 The E experiment will be ready for beam in Hall C ( Nue Nakamura’s Talk ) (e,e’K + ) hypernuclear spectroscopy at JLab

12 C(  +,K + ) 12  C spectra by the SKS spectrometer at KEK 12 GeV PS KEK336 2 MeV(FWHM) KEK E MeV(FWHM) Hypernuclear spectroscopy established BNL 3 MeV(FWHM) SKS Mass resolution and yield limited

Hypernuclear investigation Mean field aspects of nuclear matter Mean field aspects of nuclear matter –A baryon deep inside a nucleus distinguishable as a baryon ?  N interaction  N interaction –Flavor SU(3) –  mixing or the three-body interaction New form of nuclei New form of nuclei Spectroscopy in the wide mass range High resolution and High yield rate

 Single particle states  Single particle states ->  -nuclear potential ->  -nuclear potential  hyperon in a heavier nucleus  Single-particle orbits in a nucleus E140a at KEK Hotchi et al., PRC 64 (2001) Hasegawa et. al., PRC 53 (1996)1210KEK E140a Skyrme HF (Yamamoto) DDRH (Lenske) Quark-meson coupling (Saito, Thomas) ……… YLaPb Si

Hypernuclear spectroscopy Reaction spectroscopy  -ray spectroscopy Resolution > 1.5 MeV with meson beams so far Applicable to all hypernuclear states Mass, cross sections, angular distributions, polarization …. Each reaction populates characteristic states Resolution as good as a few keV Applicable to the states below nucleon emission thresholds Angular distribution, lifetime, branching ratios … Powerful for spin dependent interaction Complimentary Better resolution required Higher yield required

B  =0  Hypernuclear production (  +,K + ) Stopped (K -,  ) (e,e’K+) ( ,K + ) (p,K + ) Inflight(K -,  ) Hypernuclear Cross section Momentum transfer (MeV/c) mb/sr nb/sr  b/sr JLab KEK, BNL BNL, CERN (K -,  - ) (  +,K + )

Expansion of hypernuclear chart by the (e,e ’ K + ) reaction Mirror symmetric hypernuclei A : to be studied by the (e,e ’ K+) reaction ( ppnp 57(2006) )

Basic characteristics of (e,e ’ K + ) spectroscopy Proton converted to   Neutron rich  hypernuclei Proton converted to   Neutron rich  hypernuclei Large angular momentum transfer  Similarly to (  +,K + ) reaction Large angular momentum transfer  Similarly to (  +,K + ) reaction Spin-flip amplitude  Unnatural parity hypernuclear states Spin-flip amplitude  Unnatural parity hypernuclear states Sub MeV resolution  High quality primary beam Sub MeV resolution  High quality primary beam Small thin target ( even enriched targets ) Small thin target ( even enriched targets )  High quality primary beam  High quality primary beam

E and E01-011

K + detection At very forward angle (~ 0 degrees) Maximum hypernuclear production cross section e’ detection = tag virtual photon energy and emission angle At extremely forward angles Advantage : Large virtual photon flux Disadvantage : Huge backgrounds from Bremsstrahlung Kinematics of the (e,e ’ K + ) reaction in Hall C p e =0.3GeV/c e’ K+K+ p K =1.2 GeV/c E e =1.8 GeV e - Beam Target nucleus E  =1.5 GeV σ total (  b) E γ (GeV) p( ,K + )  Total cross section Phys. Lett. B 445, 20 (1998) M. Q. Tran et al.

Kaon Angular Distribution Angle (deg) d  /d  (nb/sr) Electron Angular Distribution Angular distributions of scattered electrons and kaons Sotona

The first (e,e ’ K + ) spectroscopy experiment (JLab E89-009) E e = 1.7,1.8 GeV  = E  = 1.5 GeV p K = 1.2 GeV  e = 0 degrees  k = 0-7 degrees Electron spectrometer --- Enge split pole Kaon Spectrometer --- SOS (Short Orbit Spectrometer) Splitter magnet 0 degree tagging geometry SOS

152 nb/sr 12  B spectrum of E Ground state doublet B  = 11.4 ± 0.5 MeV Cross section 140±17(stat) ±18(sys) nb/sr Motoba’s calculation Binding energy Emulsion data B  = MeV d  /d  nb/sr/0.3 MeV -B  (MeV) (2+,3+)(1-,2-) (1-,0-) (2-,1-) ~ 750 keV(FWHM) 292 hrs 0.66  A T. Miyoshi et al., Phy. Rev. Lett. 90, (2003) J  cross section

What limited the E experiment ? Hypernuclear yield rate Hypernuclear yield rate –High accidental background rate due to Brems electrons limited luminosity –Kaon solid angle limited detection efficiency Energy resolution Energy resolution –The kaon arm limited hypernuclear mass resolution (1) A high-resolution large-solid-angle kaon spectrometer (HKS) (2) New experimental configuration “Tilt method”

Maximum momentum 1.2 GeV/c Dispersion 4.7 cm/% Momentum resolution 2 x (FWHM) Solid angle 30 msr w/o splitter 16 msr w splitter Momentum acceptance 12.5 % The HKS spectrometer system for E (2) Tilt method for the electron arm (1) High resolution Kaon Spectrometer (HKS)

K+K+ e’ E setup in Hall C ENGE HKS Electron beam To beam dump From upstream Splitter Electron beam e’ K+K+ To beam dump

Kinematical regions of electrons and kaons 12  B gr band Real data

HKS detectors HKS exit p,K +,  +,e +

Time of flight w/ cherenkov cut p K   tof –  K After cherenkov cut

Tilt method The electron spectrometer (ENGE) vertically tilted by 8 degree e’ 8 degree --- Normal to the dispersive plane of the splitter magnet --- Higher luminosityHigher hadron rates

Expected singles rates Target HKSENGE e + (kHz)  + (kHz) K + (kHz)p(kHz) e - (kHz)  - (kHz) 12 C , Si , V , E C 12 C <1 Hz ,000- SOSENGE I e = 30  A, 100 mg/cm 2 High rejection efficiencies against pions and protons are required Measured values at E I e = 0.66  A, 22 mg/cm 2 Greater hadron rates

Beam currents, singles rates & trigger rates TargetTargetThickness (mg/cm 2 ) Beam current (  A) Hadron singles rate (kHz) electron singles rate (kHz) COIN Trigger rate (kHz) CH 2 5mm Li C Si “Tilt method” works !! E E01-011

Expected yield comparison of E and E ItemE (2 nd generation) E (1 st generation) Gain factor Virtual photon flux per electron(x10 -4 ) Target thickness(mg/cm 2 ) Kaon survival rate Solid angle of K arm (msr) Beam current (  A) Estimated yield ( 12  B gr :counts/h) 20(expected)0.9(measured)23

p(e,e ’ K + )  0 reactions on CH2 targets 12 C(e,e’K + ) quasi-free Accidental E89-009E  00 450 mg/cm2, 1.5  A, ~ 70 hours8.8 mg/cm2, 0.5 or 1.0  A, 183 hours 1.43 MeV (FWHM) 1.47 MeV (FWHM)

12 C (e,e ’ K + ) 12  B spectra Preliminary Hypernuclear excitation spectrum d  /d  nb/sr/0.3 MeV -B  (MeV) E01-011E ~ 800 keV Counts (0.25 MeV/bin) ss pp 292hrs 0.66  A Accidentals ~ 90 hrs 30  A T. Miyoshi et al., Phy. Rev. Lett. 90, (2003)

Sotona,Motoba 12 C (  ,K + ) 12  C B  = 10.8 MeV B  = -0.2 MeV 12  C g.s yield rate ~20 /hr (1 g/cm 2 target) KEK-E336 SKS Counts (0.2 MeV/bin) Reaction spectra on a 12 C target Counts (0.25 MeV/bin) ss pp JLAB – HKS ~ 90 hrs w/ 30  A Preliminary Accidentals B  (MeV) Core excited 12  B g.s yield rate ~8 /hr (0.1 g/cm 2 target) B  (s) = 11.5 MeV B  (p) = 1.0 MeV 12 C (e,e ’ K + ) 12  B (Preliminary)

Motoba with full (sd) n wave function Accidentals Counts (0.25 MeV/bin) Preliminary ss pp 28 Si(e,e ’ K + ) 28  Al reaction B  (MeV) 750 keV (FWHM) B  (s)= 18.1 MeV B  (p)= 7.4 MeV Reaction spectra on a 28 Si target ( Preliminary ) 28 Si(  ,K + ) 28  Si reaction B  (s)= 16.6 MeV B  (p)= 7.0 MeV KEK E140a SKS 28 Si enriched target used

Accidentals B  (MeV) Counts (0.4 MeV/bin) 7 Li(e,e’K + ) 7  He reaction Preliminary 30 hrs 30  A ss E. Hiyama, et al., PRC (1996) Sotona B  = 5.4 MeV ( Preliminary ) Reaction spectrum on a 7 Li target 960 keV (FWHM)

Evolution of (e,e ’ K + ) spectroscopy at JLab E89-009E94-107E01-011E ConfigurationSOS+ENGE+SplitterHRS+HRS+Septum HKS+ENGE +Splitter HKS+HES +New splitter Beam intensity (  A) on 12 C thickness (mg/cm 2 ) Hypernuclear yield (12  B gr : /hr) (12  B gr : /hr)0.948~(20)(~40) Resolution (keV) ~800 (400 keV) 700~800(3-400)(3-400) Beam energy (GeV) * p K (central : GeV) p e (central: GeV ) – 1.0  K (degree)  e (degree) ( ) expected ?

Summary Precision hypernuclear spectroscopy by the (e,e ’ K + ) reaction plays an essential role in the investigation of hadronic may-body systems that contain “ strangeness ”. Precision hypernuclear spectroscopy by the (e,e ’ K + ) reaction plays an essential role in the investigation of hadronic may-body systems that contain “ strangeness ”. The 2nd generation experiment in Hall C, JLab E01-011, has been performed in 2005, installing the new kaon spectrometer (HKS) and adopting so-called “ tilt ” geometry for the electron spectrometer. The 2nd generation experiment in Hall C, JLab E01-011, has been performed in 2005, installing the new kaon spectrometer (HKS) and adopting so-called “ tilt ” geometry for the electron spectrometer. Resolution as good as ~700 keV(FWHM) and yield rate of 7-8 counts/hr for the 12  B ground state doublet were realized. Resolution as good as ~700 keV(FWHM) and yield rate of 7-8 counts/hr for the 12  B ground state doublet were realized. Preliminary spectra for a 28 Si target as well as those for 12 C and 7 Li targets are presented, and compared with calculated spectra and (  +,K + ) reaction spectra. Preliminary spectra for a 28 Si target as well as those for 12 C and 7 Li targets are presented, and compared with calculated spectra and (  +,K + ) reaction spectra.