Part 7.3 Decision Trees Decision tree representation ID3 learning algorithm Entropy, information gain Overfitting.

Slides:



Advertisements
Similar presentations
Decision Tree Learning - ID3
Advertisements

Decision Trees Decision tree representation ID3 learning algorithm
1er. Escuela Red ProTIC - Tandil, de Abril, Decision Tree Learning 3.1 Introduction –Method for approximation of discrete-valued target functions.
Enhancements to basic decision tree induction, C4.5
ICS320-Foundations of Adaptive and Learning Systems
Classification Techniques: Decision Tree Learning
Decision Tree Learning 主講人:虞台文 大同大學資工所 智慧型多媒體研究室.
Decision Trees IDHairHeightWeightLotionResult SarahBlondeAverageLightNoSunburn DanaBlondeTallAverageYesnone AlexBrownTallAverageYesNone AnnieBlondeShortAverageNoSunburn.
Machine Learning Group University College Dublin Decision Trees What is a Decision Tree? How to build a good one…
CS 590M Fall 2001: Security Issues in Data Mining Lecture 4: ID3.
Decision tree LING 572 Fei Xia 1/10/06. Outline Basic concepts Main issues Advanced topics.
Decision Tree Learning Learning Decision Trees (Mitchell 1997, Russell & Norvig 2003) –Decision tree induction is a simple but powerful learning paradigm.
Decision Trees and Decision Tree Learning Philipp Kärger
Università di Milano-Bicocca Laurea Magistrale in Informatica Corso di APPRENDIMENTO E APPROSSIMAZIONE Prof. Giancarlo Mauri Lezione 3 - Learning Decision.
Decision Trees Decision tree representation Top Down Construction
1 Interacting with Data Materials from a Course in Princeton University -- Hu Yan.
Ch 3. Decision Tree Learning
Machine Learning Reading: Chapter Text Classification  Is text i a finance new article? PositiveNegative.
Decision Tree Pruning Methods Validation set – withhold a subset (~1/3) of training data to use for pruning –Note: you should randomize the order of training.
Decision Tree Learning
Decision tree LING 572 Fei Xia 1/16/06.
Decision tree learning
By Wang Rui State Key Lab of CAD&CG
Fall 2004 TDIDT Learning CS478 - Machine Learning.
Machine Learning Chapter 3. Decision Tree Learning
Machine Learning 1 Introduction
Artificial Intelligence 7. Decision trees
Machine Learning Decision Tree.
Mohammad Ali Keyvanrad
Decision tree learning Maria Simi, 2010/2011 Inductive inference with decision trees  Decision Trees is one of the most widely used and practical methods.
Machine Learning Lecture 10 Decision Tree Learning 1.
CpSc 810: Machine Learning Decision Tree Learning.
Decision-Tree Induction & Decision-Rule Induction
Decision Tree Learning
Data Mining-Knowledge Presentation—ID3 algorithm Prof. Sin-Min Lee Department of Computer Science.
Artificial Intelligence Project #3 : Analysis of Decision Tree Learning Using WEKA May 23, 2006.
For Wednesday No reading Homework: –Chapter 18, exercise 6.
For Monday No new reading Homework: –Chapter 18, exercises 3 and 4.
CS 8751 ML & KDDDecision Trees1 Decision tree representation ID3 learning algorithm Entropy, Information gain Overfitting.
CS 5751 Machine Learning Chapter 3 Decision Tree Learning1 Decision Trees Decision tree representation ID3 learning algorithm Entropy, Information gain.
机器学习 陈昱 北京大学计算机科学技术研究所 信息安全工程研究中心. 课程基本信息  主讲教师:陈昱 Tel :  助教:程再兴, Tel :  课程网页:
Decision Trees, Part 1 Reading: Textbook, Chapter 6.
Decision Tree Learning
Training Examples. Entropy and Information Gain Information answers questions The more clueless I am about the answer initially, the more information.
Decision Tree Learning Presented by Ping Zhang Nov. 26th, 2007.
Seminar on Machine Learning Rada Mihalcea Decision Trees Very short intro to Weka January 27, 2003.
Machine Learning Recitation 8 Oct 21, 2009 Oznur Tastan.
Outline Decision tree representation ID3 learning algorithm Entropy, Information gain Issues in decision tree learning 2.
Friday’s Deliverable As a GROUP, you need to bring 2N+1 copies of your “initial submission” –This paper should be a complete version of your paper – something.
Decision Tree Pruning problem of overfit approaches
Decision Tree Learning DA514 - Lecture Slides 2 Modified and expanded from: E. Alpaydin-ML (chapter 9) T. Mitchell-ML.
Review of Decision Tree Learning Bamshad Mobasher DePaul University Bamshad Mobasher DePaul University.
CSE573 Autumn /11/98 Machine Learning Administrative –Finish this topic –The rest of the time is yours –Final exam Tuesday, Mar. 17, 2:30-4:20.
Machine Learning Inductive Learning and Decision Trees
Università di Milano-Bicocca Laurea Magistrale in Informatica
Decision Tree Learning
Decision trees (concept learnig)
Machine Learning Lecture 2: Decision Tree Learning.
Decision trees (concept learnig)
Decision Tree Learning
Lecture 3: Decision Tree Learning
Decision Tree Saed Sayad 9/21/2018.
Machine Learning Chapter 3. Decision Tree Learning
Machine Learning: Lecture 3
Decision Trees Decision tree representation ID3 learning algorithm
Machine Learning Chapter 3. Decision Tree Learning
Decision Trees.
Decision Trees Decision tree representation ID3 learning algorithm
Decision Trees Berlin Chen
INTRODUCTION TO Machine Learning
Presentation transcript:

Part 7.3 Decision Trees Decision tree representation ID3 learning algorithm Entropy, information gain Overfitting

ICS6112 Supplimentary material www es/4_dtrees1.html

ICS6113 Decision Tree for PlayTennis Outlook SunnyOvercastRain Humidity HighNormal Wind StrongWeak NoYes No

ICS6114 Decision Tree for PlayTennis Outlook SunnyOvercastRain Humidity HighNormal NoYes Each internal node tests an attribute Each branch corresponds to an attribute value node Each leaf node assigns a classification

ICS6115 No Decision Tree for PlayTennis Outlook SunnyOvercastRain Humidity HighNormal Wind StrongWeak NoYes No Outlook Temperature Humidity Wind PlayTennis Sunny Hot High Weak ?

ICS6116 Decision Tree for Conjunction Outlook SunnyOvercastRain Wind StrongWeak NoYes No Outlook=Sunny  Wind=Weak No

ICS6117 Decision Tree for Disjunction Outlook SunnyOvercastRain Yes Outlook=Sunny  Wind=Weak Wind StrongWeak NoYes Wind StrongWeak NoYes

ICS6118 Decision Tree for XOR Outlook SunnyOvercastRain Wind StrongWeak YesNo Outlook=Sunny XOR Wind=Weak Wind StrongWeak NoYes Wind StrongWeak NoYes

ICS6119 Decision Tree Outlook SunnyOvercastRain Humidity HighNormal Wind StrongWeak NoYes No decision trees represent disjunctions of conjunctions (Outlook=Sunny  Humidity=Normal)  (Outlook=Overcast)  (Outlook=Rain  Wind=Weak)

ICS61110 When to consider Decision Trees Instances describable by attribute-value pairs Target function is discrete valued Disjunctive hypothesis may be required Possibly noisy training data Missing attribute values Examples: Medical diagnosis Credit risk analysis Object classification for robot manipulator (Tan 1993)

ICS61111 Top-Down Induction of Decision Trees ID3 1.A  the “best” decision attribute for next node 2.Assign A as decision attribute for node 3.For each value of A create new descendant 4.Sort training examples to leaf node according to the attribute value of the branch 5.If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.

ICS61112 Which Attribute is ”best”? A 1 =? TrueFalse [21+, 5-][8+, 30-] [29+,35-] A 2 =? TrueFalse [18+, 33-] [11+, 2-] [29+,35-]

ICS61113 Entropy S is a sample of training examples p + is the proportion of positive examples p - is the proportion of negative examples Entropy measures the impurity of S Entropy(S) = -p + log 2 p + - p - log 2 p -

ICS61114 Entropy Entropy(S)= expected number of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code) Why? Information theory optimal length code assign –log 2 p bits to messages having probability p. So the expected number of bits to encode (+ or -) of random member of S: -p + log 2 p + - p - log 2 p -

ICS61115 Information Gain Gain(S,A): expected reduction in entropy due to sorting S on attribute A A 1 =? TrueFalse [21+, 5-][8+, 30-] [29+,35-] A 2 =? TrueFalse [18+, 33-] [11+, 2-] [29+,35-] Gain(S,A)=Entropy(S) -  v  values(A) |S v |/|S| Entropy(S v ) Entropy([29+,35-]) = -29/64 log 2 29/64 – 35/64 log 2 35/64 = 0.99

ICS61116 Information Gain A 1 =? TrueFalse [21+, 5-][8+, 30-] [29+,35-] Entropy([21+,5-]) = 0.71 Entropy([8+,30-]) = 0.74 Gain(S,A 1 )=Entropy(S) -26/64*Entropy([21+,5-]) -38/64*Entropy([8+,30-]) =0.27 Entropy([18+,33-]) = 0.94 Entropy([8+,30-]) = 0.62 Gain(S,A 2 )=Entropy(S) -51/64*Entropy([18+,33-]) -13/64*Entropy([11+,2-]) =0.12 A 2 =? TrueFalse [18+, 33-] [11+, 2-] [29+,35-]

ICS61117 Training Examples

ICS61118 Selecting the Next Attribute Humidity HighNormal [3+, 4-][6+, 1-] S=[9+,5-] E=0.940 Gain(S,Humidity) =0.940-(7/14)*0.985 – (7/14)*0.592 =0.151 E=0.985 E=0.592 Wind WeakStrong [6+, 2-][3+, 3-] S=[9+,5-] E=0.940 E=0.811E=1.0 Gain(S,Wind) =0.940-(8/14)*0.811 – (6/14)*1.0 =0.048 Humidity provides greater info. gain than Wind, w.r.t target classification.

ICS61119 Selecting the Next Attribute Outlook Sunny Rain [2+, 3-] [3+, 2-] S=[9+,5-] E=0.940 Gain(S,Outlook) =0.940-(5/14)* (4/14)*0.0 – (5/14)* =0.247 E=0.971 Over cast [4+, 0] E=0.0

ICS61120 Selecting the Next Attribute The information gain values for the 4 attributes are: Gain(S,Outlook) =0.247 Gain(S,Humidity) =0.151 Gain(S,Wind) =0.048 Gain(S,Temperature) =0.029 where S denotes the collection of training examples

ICS61121 ID3 Algorithm Outlook SunnyOvercastRain Yes [D1,D2,…,D14] [9+,5-] S sunny =[D1,D2,D8,D9,D11] [2+,3-] ? ? [D3,D7,D12,D13] [4+,0-] [D4,D5,D6,D10,D14] [3+,2-] Gain(S sunny, Humidity)=0.970-(3/5)0.0 – 2/5(0.0) = Gain(S sunny, Temp.)=0.970-(2/5)0.0 –2/5(1.0)-(1/5)0.0 = Gain(S sunny, Wind)=0.970= -(2/5)1.0 – 3/5(0.918) = 0.019

ICS61122 ID3 Algorithm Outlook SunnyOvercastRain Humidity HighNormal Wind StrongWeak NoYes No [D3,D7,D12,D13] [D8,D9,D11] [D6,D14] [D1,D2] [D4,D5,D10]

ICS61123 Occam’s Razor Why prefer short hypotheses? Argument in favor: Fewer short hypotheses than long hypotheses A short hypothesis that fits the data is unlikely to be a coincidence A long hypothesis that fits the data might be a coincidence Argument opposed: There are many ways to define small sets of hypotheses E.g. All trees with a prime number of nodes that use attributes beginning with ”Z” What is so special about small sets based on size of hypothesis

ICS61124 Overfitting One of the biggest problems with decision trees is Overfitting

ICS61125 Overfitting in Decision Tree Learning

ICS61126 Avoid Overfitting How can we avoid overfitting? Stop growing when data split not statistically significant Grow full tree then post-prune Minimum description length (MDL): Minimize: size(tree) + size(misclassifications(tree))

ICS61127 Reduced-Error Pruning Split data into training and validation set Do until further pruning is harmful: Evaluate impact on validation set of pruning each possible node (plus those below it) Greedily remove the one that most improves the validation set accuracy Produces smallest version of most accurate subtree

ICS61128 Effect of Reduced Error Pruning

ICS61129 Rule-Post Pruning Convert tree to equivalent set of rules Prune each rule independently of each other Sort final rules into a desired sequence to use Method used in C4.5

ICS61130 Converting a Tree to Rules Outlook SunnyOvercastRain Humidity HighNormal Wind StrongWeak NoYes No R 1 : If (Outlook=Sunny)  (Humidity=High) Then PlayTennis=No R 2 : If (Outlook=Sunny)  (Humidity=Normal) Then PlayTennis=Yes R 3 : If (Outlook=Overcast) Then PlayTennis=Yes R 4 : If (Outlook=Rain)  (Wind=Strong) Then PlayTennis=No R 5 : If (Outlook=Rain)  (Wind=Weak) Then PlayTennis=Yes

ICS61131 Continuous Valued Attributes Create a discrete attribute to test continuous Temperature = C (Temperature > C) = {true, false} Where to set the threshold? NoYes No PlayTennis 27 0 C 24 0 C 22 0 C 19 0 C 18 0 C 15 0 C Temperature (see paper by [Fayyad, Irani 1993]

ICS61132 Attributes with many Values Problem: if an attribute has many values, maximizing InformationGain will select it. E.g.: Imagine using Date= as attribute perfectly splits the data into subsets of size 1 A Solution: Use GainRatio instead of information gain as criteria: GainRatio(S,A) = Gain(S,A) / SplitInformation(S,A) SplitInformation(S,A) = -  i=1..c |S i |/|S| log 2 |S i |/|S| Where S i is the subset for which attribute A has the value v i

ICS61133 Unknown Attribute Values What if some examples have missing values of A? Use training example anyway sort through tree If node n tests A, assign most common value of A among other examples sorted to node n. Assign most common value of A among other examples with same target value Assign probability pi to each possible value vi of A Assign fraction pi of example to each descendant in tree Classify new examples in the same fashion

ICS61134 Cross-Validation Estimate the accuracy of a hypothesis induced by a supervised learning algorithm Predict the accuracy of a hypothesis over future unseen instances Select the optimal hypothesis from a given set of alternative hypotheses Pruning decision trees Model selection Feature selection Combining multiple classifiers (boosting)

ICS61135 Cross-Validation k-fold cross-validation splits the data set D into k mutually exclusive subsets D 1,D 2,…,D k Train and test the learning algorithm k times, each time it is trained on D\D i and tested on D i D1D1 D2D2 D3D3 D4D4 D1D1 D2D2 D3D3 D4D4 D1D1 D2D2 D3D3 D4D4 D1D1 D2D2 D3D3 D4D4 D1D1 D2D2 D3D3 D4D4 acc cv = 1/n  (vi,yi)  D  (I(D\D i,v i ),y i )

ICS61136 Cross-Validation Uses all the data for training and testing Complete k-fold cross-validation splits the dataset of size m in all (m over m/k) possible ways (choosing m/k instances out of m) Leave n-out cross-validation sets n instances aside for testing and uses the remaining ones for training (leave one-out is equivalent to n-fold cross- validation) In stratified cross-validation, the folds are stratified so that they contain approximately the same proportion of labels as the original data set