GRB Afterglow Spectra Daniel Perley Astro 250 19 September* 2005 * International Talk Like a Pirate Day.

Slides:



Advertisements
Similar presentations
Astronomy Notes to Accompany the Text Astronomy Today, Chaisson, McMillan Jim Mims.
Advertisements

Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Universe Eighth Edition Universe Roger A. Freedman William J. Kaufmann III CHAPTER 5 The Nature of Light CHAPTER 5 The Nature of Light.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Electromagnetic Radiation Electromagnetic radiation - all E-M waves travel at c = 3 x 10 8 m/s. (Slower in water, glass, etc) Speed of light is independent.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Electron thermalization and emission from compact magnetized sources
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Reverse Shocks and Prompt Emission Mark Bandstra Astro
The hydrogen atom Energy is measured in eV, or electron volts Light (photon) is electromagnetic energy Since only permitted electron orbits (energies),
VLBI Imaging of a High Luminosity X-ray Hotspot Leith Godfrey Research School of Astronomy & Astrophysics Australian National University Geoff Bicknell,
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
GRB Prompt Emission: Turbulence, Magnetic Field & Jitter Radiation Jirong Mao.
1 Understanding GRBs at LAT Energies Robert D. Preece Dept. of Physics UAH Robert D. Preece Dept. of Physics UAH.
Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL.
Spectral analysis of non-thermal filaments in Cas A Miguel Araya D. Lomiashvili, C. Chang, M. Lyutikov, W. Cui Department of Physics, Purdue University.
Collisionless shocks in Gamma Ray Bursts Current results and future perspectives. Århus, September 2005 Troels Haugbølle Dark Cosmology.
A Model for Emission from Microquasar Jets: Consequences of a Single Acceleration Episode We present a new model of emission from jets in Microquasars,
Spectroscopy and Atomic Structure.
Chapter 4 Spectroscopy Chapter 4 opener. Spectroscopy is a powerful observational technique enabling scientists to infer the nature of matter by the way.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
1 P1X: Optics, Waves and Lasers Lectures, Lasers and their Applications i) to understand what is meant by coherent and incoherent light sources;
SCATTERING OF RADIATION Scattering depends completely on properties of incident radiation field, e.g intensity, frequency distribution (thermal emission.
Properties of Light.
COLOR STUDY OF BLAZARS Robert Filgas Supervisor: RNDr. René Hudec, CSc., AÚ AV ČR.
Swift Annapolis GRB Conference Prompt Emission Properties of Swift GRBs T. Sakamoto (CRESST/UMBC/GSFC) On behalf of Swift/BAT team.
Monte-Carlo Simulation of Thermal Radiation from GRB Jets Sanshiro Shibata (Konan Univ.) Collaborator: Nozomu Tominaga (Konan Univ., IPMU)
Spectra of partially self-absorbed jets Christian Kaiser University of Southampton Christian Kaiser University of Southampton.
Gamma-Ray Burst Polarization Kenji TOMA (Kyoto U/NAOJ) Collaborators are: Bing Zhang (Nevada U), Taka Sakamoto (NASA), POET team Ryo Yamazaki, Kunihito.
Ch 8: Stars & the H-R Diagram  Nick Devereux 2006 Revised 9/12/2012.
PHY418 PARTICLE ASTROPHYSICS Radio Emission 1. Radio emission and particle astrophysics 2 Why are the.
© 2004 Pearson Education Inc., publishing as Addison-Wesley 6. Light: The Cosmic Messenger.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Light 1)Exam Review 2)Introduction 3)Light Waves 4)Atoms 5)Light Sources October 14, 2002.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Il (tl) = Il (0) e-t(l) + Bl(T) (1 – e-t(l))
Radiation spectra from relativistic electrons moving in turbulent magnetic fields Yuto Teraki & Fumio Takahara Theoretical Astrophysics Group Osaka Univ.,
Spectroscopy and Atomic Structure Ch 04.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 2 Light and Matter.
Chapter 4 Spectroscopy The beautiful visible spectrum of the star Procyon is shown here from red to blue, interrupted by hundreds of dark lines caused.
Chapter 4.
Adams Accelerator Institute 10 - E. Wilson - 1/24/ Slide 1 Lecture 14 ACCELERATOR PHYSICS MT 2004 E. J. N. Wilson.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
A new model for emission from Microquasar jets Based on works by Asaf Pe’er (STScI) In collaboration with Piergiorgio Casella (Southampton) March 2010.
Radiation from Poynting Jets and Collisionless Shocks Edison Liang, Koichi Noguchi Shinya Sugiyama, Rice University Acknowledgements: Scott Wilks, Bruce.
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Universe Tenth Edition Chapter 5 The Nature of Light Roger Freedman Robert Geller William Kaufmann III.
Rice 05/15/07 Simulations: Anatoly Spitkovsky (Princeton) Luis Silva and the Plasma Simulation Group (Portugal) Ken Nishikawa (U. Alabama, Huntsville)
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
© 2017 Pearson Education, Inc.
Thermal electrons in GRB afterglows, or
Photon breeding mechanism in jets and its observational signatures
Observation of Pulsars and Plerions with MAGIC
Junior Research Fellow,
Gamma-ray bursts from magnetized collisionally heated jets
Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks ? Junichi Aoi (YITP, Kyoto Univ.) co-authors:
Afterglow Radiation from Gamma-Ray Bursts
Andrei M. Beloborodov Columbia University
Accelerator Physics Synchrotron Radiation
Synchro-Curvature Self Compton Radiation
Presentation transcript:

GRB Afterglow Spectra Daniel Perley Astro September* 2005 * International Talk Like a Pirate Day

Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects log P 1/2 -(p+1)/2 m t cool =  m e c / σ T cβ 2  e 2  2 (B 2 /8π)  c = σ T  B 2 t 4 3 6π mec6π mec t cool α 1 /  e  c α 1 / t 'critical' e - : t = t cool  e =  c

Remember, P pk is const, so constant amount of energy is emitted at all  i m < < e pk (  i ) α  i 2 log e e 1/2 mm ii m e i

Subject Daniel Perley19 September 2005 GRB Afterglow Spectra Title Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Background Daniel Perley19 September 2005 GRB Afterglow Spectra The GRB Standard Model ISM Shocked Gas Earth SHOCK Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Background Daniel Perley19 September 2005 GRB Afterglow Spectra Relativistic Shock SHOCK ISM Γ number density n o energy density E o = n o m p c 2 energy per particle E o /n o = m p c 2 From Brian’s lecture… n′ = 4  n o E′ = 4  2  n o m p c 2 E′/n′ =  m p c 2  = Γ √2 >Compression< by 4  Energy Increase by factor  Deceleration by factor √ 2 Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Energy Deposition Where does the energy go? energy per particle E o /n o = m p c 2 E′/n′ =  m p c 2 Energy Increase by factor  Protons Electrons Magnetic field Other particles? E p = ε p E′ E e = ε e E′ B = ε B E′ Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Energy Deposition Daniel Perley19 September 2005 GRB Afterglow Spectra Proton/Electron Energy SHOCK ISMShocked Gas Γ  ee Extreme (relativistic) ‘temperature’ of shocked gas described by  p,  e Bulk motion of shocked gas relative to observer Particle energy deposited in random motions. Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Proton Energy Not particularly interesting on its own. Protons necessarily drag electrons with them at the same bulk velocity. Share energy with electrons: electron  factors necessarily much higher. Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Electron Energy Faster-moving electrons will radiate more efficiently by all important processes. ee Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Electron Energy Distribution Q: How is electron energy distributed? A:………? Hypothesis: Power-law? (Seen in SNe, NR shocks) Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Log N Log  N α  -p N α [Complicated] Model as power-law: Energy Deposition Electron Energy Distribution Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Electron Energy Distribution Simplify: cut-off power law at minimum energy Log N  Log  N  α  -p N α [Complicated] mm Minimum energy Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Electron Energy Distribution Mimimum energy determined by total energy density: n = ∫ N  e d  e E e = m e c 2 ∫  e N  e d  e = C  m 1-p = m e c 2 C  m 2-p Infinite if p<2 N  e e  e  -p mm n eN eN e e mm  e  1-p E 1 1-p C = (1-p)  m p-1 n 1 2-p = m e c 2  m n 1-p 2-p  m  p-2 p-1  EeEe n me c2n me c2 p-2 p-1  mpmp meme  εeεe ≈ 610 ε e  Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Electron Energy Distribution N e e  -p mm Limits on p:  N e e mm n = ∫ N  e d  e = 1 1-p N α  1-p C  m 1-p E = m e c 2 ∫  N  e d  e = m e c 2 2-p = C = (1-p) n  m 1-p C  m 2-p Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Magnetic Energy Strong post-shock magnetic field expected from equipartition. Generation mechanism unknown/complicated – various plasma effects B2B2 8π8π = ε B E′ = ε B 4  2  n o m p c 2 = 32π ε B  2  n o m p c 2 B2B2 B = 32π ε B n o m p  c ≈ ( 0.4 gauss) ε B 1/2 ( ) 1/2  nono cm -3 B Energy Deposition Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Emission Mechanisms How does it cool? Bremsstrahlung P α  e 3/2 n 2 Inverse Compton P = σ T cβ 2  e 2 U ph Synchrotron P = σ T cβ 2  e 2 U B Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Relativistic Cyclotron Relativistic modification to cyclotron frequency: ω cyc = e B  m c Most emission is not at this frequency. Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Synchrotron Beaming Emission is highly pulsed – we see emission for only 1/  2 of total emission time. ω cyc = e B  m c E t 1/ω cyc 1/  2 ω cyc - One factor of  from beaming angle - Additional factor of   from "Doppler" boost 1/  Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

1e - Synchrotron Spectrum E t 1/ω cyc 1/  2 ω cyc = E t δ(t-n/ω cyc ) = Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

1e - Synchrotron Spectrum E t = E t δ(ω-nω cyc ) ^ ^ Fourier transformed: ω cyc  2 ω cyc Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra 1e - Synchrotron Spectrum log P log  1/3 e - /ω cyc  1/2 pk Total Power: P = σ T cβ 2  2 U B α  2 U B Peak Freq.: pk ~  2 ω cyc 4 3 More precisely… Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra 1e - Synchrotron Spectrum log P  1/3 e - /ω cyc  1/2 pk log More precisely… Shocked frame: α  e 2 α const Total Power: P = σ T cβ 2  e 2 U B Peak Freq.: pk ≈  e 2 ω cyc / 2π Peak Power: P pk ≈ P / pk 4 3 Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra 1e - Synchrotron Spectrum log P log  1/3 e - /ω cyc  1/2 pk Shocked frame: α  e 2 α const Total Power: P = σ T cβ 2  e 2 U B Peak Freq.: pk ≈  e 2 ω cyc / 2π Peak Power: P pk ≈ P / pk 4 3 Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra 1e - Synchrotron Spectrum log P log  1/3 e - /ω cyc  1/2 pk Total Power: P = σ T cβ 2  e 2  2 U B Peak Freq.: pk ≈  e 2  ω cyc / 2π Peak Power: P pk ≈ P / pk Observer frame: α  e 2  2 α  e 2  α  4 3 Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Uncooled Multi-e - Spectrum log P log 1/3 pk exp Material contains many electrons at different velocities (  e ) – true spectrum is a combination of individual spectra, according to electron energy distribution. log N  log  e -p mm Electron distribution Electron spectrum Uncooled Sychrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Uncooled Multi-e - Spectrum Can just do a weighted sum (convolution) – but need to convert x-axis from  e to pk. log N  log  e -p mm Electron distribution From before, pk α  e 2 log N log pk m e - distribution: N   α  e -p Solve: N = N  α  e -p  e -1 α -(p+1)/2 dd d d dd α ee -(p-1)/2 Sign error?? Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Uncooled Multi-e - Spectrum Electron distribution log N log pk m -(p-1)/2 log P log 1/3 pk exp Electron spectrum Total Spectrum Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Uncooled Multi-e - Spectrum log N log pk m -(p-1)/2 log P log 1/3 pk exp log P 1/3 Daniel Perley19 September 2005 GRB Afterglow Spectra -(p-1)/2 m Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Uncooled Multi-e - Spectrum Daniel Perley19 September 2005 GRB Afterglow Spectra "Broken" Power law: Below m, emission dominated by low-  e - Above m, emission from electrons with peak (  ) = m log P 1/3 -(p-1)/2 m log pk Uncooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Cooled Synchrotron Characteristic Cooling Time Daniel Perley19 September 2005 GRB Afterglow Spectra This analysis is too simplistic for GRBs. Calculate characteristic cooling time: log P 1/3 -(p-1)/2 m t cool = E / P =  m e c / σ T cβ 2  2 U B ≈ 4 × s ( ) -2  B gauss Potentially much shorter than time since GRB (shock passage) log pk Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Cooled Synchrotron Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling e - Spectrum If an electron's energy changes significantly over the time since the energy injection, use an "averaged" spectrum for that electron.  e = Initial electron energy (at injection)  c ≡ Final electron energy (after cooling) ≈ Energy of the highest-  e - that hasn't cooled Determined by observational timescale: t obs =  c m e c / σ T cβ 2  c 2 U B  c = 4 3 6π mec6π mec σ T B 2 t obs Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Cooled Synchrotron Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling e - Spectrum Electron radiates as it cools, with a simple synchrotron spectrum corresponding to the instantaneous energy  i.  e = Initial electron energy  c ≡ Final electron energy log P log 1/3 pk exp Instantaneous spectrum ii Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling e - Spectrum Peak power radiated at each  i is the same: log P log 1/3 pk (  i ) exp Instantaneous spectrum  e = Initial electron energy  c ≡ Final electron energy ii P(  i ) = const log P  e e cc Electron evolution log  i Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

log P log 1/3 pk exp log N  log  e -p mm Electron distribution Electron spectrum log pk e e 2 mm ii m e i e e 2 mm ii m e i

Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling e - Spectrum From before, pk α  e 2 Power distribution: P   = const Solve: P = P  =  -1 = -1/2 dd d d dd α ee log P e c Another convolution - need to transform  e to pk. log P  cc Electron evolution const -1/2 e e log  i Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling e - Spectrum log P e c log 1/3 pk exp Instantaneous spectrumElectron evolution -1/2 Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Cooling e - Spectrum log P e c log 1/3 pk exp Instantaneous spectrumElectron evolution log P 1/3-1/2 Daniel Perley19 September 2005 GRB Afterglow Spectra -1/2 Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Cooling e - Spectrum Daniel Perley19 September 2005 GRB Afterglow Spectra log P 1/3 -1/2 c e Broken power law: > e : Exponential cut-off (model as no emission) c < < e : Instantaneous emission when electron passed through appropriate  < c : Post-cooling emission log Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Cooling e - Spectrum Daniel Perley19 September 2005 GRB Afterglow Spectra log P 1/3 -1/2 m e Higher initial energy simply extends the curve to higher frequencies. log Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling e - Spectrum t cool α 1 /  e  c α 1 / t 'critical' e - : t = t cool  e =  c log N  log  e -p mm So for c < < e : P = -1/2 Cooled Synchrotron

Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling Regimes Two possibilities for multi-electron spectra: log N  log  e -p mm log N  log  e -p mm  c <  m cc cc  c >  m ALL electrons will cool on given timescale : Fast cooling SOME electrons will cool on given timescale : Slow cooling Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Fast Cooling log N  log  e -p mm  c <  m cc ALL electrons will cool on given timescale : Fast cooling Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Fast Cooling log N log e -(p-1)/2 m c log P 1/3 -1/2 Cooled synchrotron spectrum Electron distribution Sum for multi-e - using the new spectrum: -p/2 c e Fraction of N > log P 1/3-1/2 log Daniel Perley19 September 2005 GRB Afterglow Spectra c m -1/2 -(p-2)/2 ?? Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Fast Cooling log P 1/3 -1/2 c m -p/2 Broken power law: > m : Emission from electrons with  e > , during passage through appropriate  c < < m : Emission from all electrons, during passage through appropriate  < c : Emission from all electrons at all times log Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Slow Cooling log N  log  e -p mm cc  c >  m SOME electrons will cool on given timescale : Slow cooling Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Slow Cooling Fast-cooling electrons have fast-cooling spectrum, but with effective  m →  c (no -1/2 segment) log N  log  e -p mm cc -p/2 1/3 c log P log Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Slow Cooling Non-cooling electrons have an uncooled-population spectrum, but cut off at c. log N  log  e -p mm cc 1/3 -(p-1)/2 m c log log P Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Slow Cooling By their powers combined… log N  log  e -p mm cc 1/3 m c -(p-1)/2 -p/2 1/3 -(p-1)/2 -p/2 log P log Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Slow Cooling log P 1/3-(p-1)/2 m c -p/2 Broken power law: > c : Emission from cooling electrons with  e >   during passage through appropriate  m < < c : Emission from slow electrons with initial (constant) energy  < m : Emission from slow electrons with min.  m log Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Daniel Perley19 September 2005 GRB Afterglow Spectra Cooling Comparison log P 1/3-(p-1)/2 m c -p/2 log P 1/3 -1/2 c m -p/2 Fast cooling Slow cooling log Cooled Synchrotron Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Cooled Synchrotron Daniel Perley19 September 2005 GRB Afterglow Spectra Synchrotron Self-Absorption Photon can be re-absorbed to excite an electron in a magnetic field (inverse of synchrotron emission.) Synchrotron emission/absorption will be in equilibrium below a certain frequency a : below this point the shocked gas is optically thick and will radiate as a blackbody (P α 2 ) 1/3 log P log 2 a Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Synchrotron Summary Daniel Perley19 September 2005 GRB Afterglow Spectra Complete Comparison log P 1/3-(p-1)/2 m c -p/2 log P 1/3 -1/2 c m -p/2 Fast cooling Slow cooling 2 2 log a a Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Observing Daniel Perley19 September 2005 GRB Afterglow Spectra Theory vs. Observations GRB – Galama et al t burst = 12.1 days > Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Subject Daniel Perley19 September 2005 GRB Afterglow Spectra Observable Parameters An instantaneous spectrum gives several key pieces of information: a c m p F pk z ε e ε B n o E' Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects

Subject Daniel Perley19 September 2005 GRB Afterglow Spectra Intervening ISM Effects Cosmological redshift will not affect power-law - all radiation scaled down by (1+z) Will see deviation from power-law in some frequency ranges in some cases: Galactic extinction (can be calculated/removed) Host extinction (similar to Galactic, but at higher frequencies, and cannot be estimated independently of GRB) Hydrogen absorption features (associated with high-z) Background GRB Standard Model Relativistic Shock Energy Deposition Proton Energy Electron Energy Electron Distribution Magnetic Energy Uncooled Synchrotron Emission Mechanisms Relativistic Cyclotron Synchrotron Beaming 1e - Spectrum Multi-e - Spectrum Cooled Synchrotron Cooling Time 1e - Spectrum Cooling Regimes Fast Cooling Slow Cooling Cooling Comparison Self-Absorption Complete Comparison Spectral Observation Observation vs. Theory Observation Parameters Intervening ISM Effects