Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東.

Slides:



Advertisements
Similar presentations
Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura & J. S. Tsai Presented.
Advertisements

Superconducting qubits
Technological issues of superconducting charge qubits Oleg Astafiev Tsuyoshi Yamamoto Yasunobu Nakamura Jaw-Shen Tsai Dmitri Averin NEC Tsukuba - SUNY.
Quantum Computer Implementations
QUANTUM DYNAMICS OF A COOPER PAIR TRANSITOR COUPLED TO A DC-SQUID Aurélien Fay under the supervision of : Olivier BUISSON - Wiebke GUICHARD - Laurent LEVY.
Low frequency noise in superconducting qubits
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Adiabatic Quantum Computation with Noisy Qubits Mohammad Amin D-Wave Systems Inc., Vancouver, Canada.
Small Josephson Junctions in Resonant Cavities David G. Stroud, Ohio State Univ. Collaborators: W. A. Al-Saidi, Ivan Tornes, E. Almaas Work supported by.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Measurements of the 1/f noise in Josephson Junctions and the implications for qubits Jan Kycia, Chas Mugford- University of Waterloo Michael Mueck- University.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM A.M. Zagoskin (D-Wave Systems and UBC) Tunable coupling of superconducting qubits Quantum Mechanics.
Superconducting Flux Qubits: Coherence, Readout, and Coupling
Josephson Junction based Quantum Control Erick Ulin-Avila Seth Saltiel.
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Josephson Junctions, What are they?
Image courtesy of Keith Schwab.
Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology,
REVIEW OF SOLID STATE QUANTUM BIT CIRCUITS
What NEC Did Engineered a two-state system Initialized the system Formed a superposition state Allowed the system to evolve Stopped the evolution Read.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
SQUID Based Quantum Bits James McNulty. What’s a SQUID? Superconducting Quantum Interference Device.
Image courtesy of Keith Schwab.
Lecture 4 - Coulomb blockade & SET Fulton TA and Dolan GJ, Phys. Rev. Lett. 59 (1987) 109.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
1 0 Fluctuating environment -during free evolution -during driven evolution A -meter AC drive Decoherence of Josephson Qubits : G. Ithier et al.: Decoherence.

Macroscopic Quantum Coherence
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
Superconducting qubits
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
M. Grajcar Comenius University, Slovakia
Superconductivity. The phonon-mediated attractive electron-electron interaction leads to the formation of Cooper-pairs which undergo a k -space condensation.
Dynamical decoupling in solids
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
Quantum Optics with Electrical Circuits: ‘Circuit QED’
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Quantum measurement and superconducting qubits Yuriy Makhlin (Landau Institute) STMP-09, St. Petersburg 2009, July 3-8.
What's super about superconducting qubits? Jens Koch Departments of Physics and Applied Physics, Yale University Chalmers University of Technology, Feb.
Meet the transmon and his friends
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
Macroscopic quantum dynamics in superconducting nanocircuits Jens Siewert Institut für Theoretische Physik, Universität Regensburg, Germany Imperial College,
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.
Entanglement for two qubits interacting with a thermal field Mikhail Mastyugin The XXII International Workshop High Energy Physics and Quantum Field Theory.
Adiabatic Quantum Computation with Noisy Qubits M.H.S. Amin D-Wave Systems Inc., Vancouver, Canada.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Measuring Quantum Coherence in the Cooper-Pair Box
Quantum Computing: Solving Complex Problems David DiVincenzo, IBM Fermilab Colloquium, 4/2007.
The rf-SQUID Quantum Bit
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Circuit QED Experiment
Superconducting Qubits
Outline Device & setup Initialization and read out
Automating the derivation of quantum circuit Hamiltonians
Decoherence at optimal point: beyond the Bloch equations
Superconducting qubit for quantum thermodynamics experiments
Josephson Flux Qubits in Charge-Phase Regime
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東

Quantum-state engineering: 1. Atomic physics 2. Molecular physics 3. NMR 4. Solid-state devices Objectives: Quantum computation and quantum communication Two kinds of Josephson junction systems for quantum bits: 1. Charge qubit: controlled by gate voltages 2. Flux qubit: controlled by magnetic fields Advantages of Solid-state devices: Easily embedded in electronic circuits Scaled up to large registers Solid-state devices: 1. Josephson junction systems 2. Quantum dots with discrete levels 3. Nanostructured materials with spin degrees of freedom Quantum computer : formed by a system whose state is restricted to being an arbitrary superposition of two “basis” states.

Sources of dephasing: 1. External leads (for qubit manipulations) 2. Noise (e.g. 1/f) from the control signal (e.g. gate voltages) Directions to minimize dephasing: 1. Low temperatures. 2. Choosing suitable coupling parameters. 3. Switch on measurements only needed (to minimize dissipative processes) Issues: 1. Limited phase coherence time T  and energy relaxation time T l (usually T l > T  ) 2. Read out of the final state of the system

n: number operator of excess Cooper-pair charges on the island : the phase of superconducting order parameter of the island : gate charge = the control parameter E C =charging energy; E J =Josephson coupling energy Charge Qubit in a Superconducting Single Electron Transistor 2e -V b /2 VgVg sourcedrain gate 2e VCVC C1C1 C2C2 CgCg +V b /2 SS AA 00 00 11 11 EJEJ Energy Varying C g V g 00 11 Oscillation between  A  and  S  with angular frequency

Spectroscopy of Energy-Level Splitting between Two Macroscopic Quantum States of Charge Coherently Superposed by Josephson Coupling Y. Nakamura, C. D. Chen, and J. S. Tsai PRL, v. 79, p (1997) SQUID E/ECE/EC Qo/eQo/e Qo/eQo/e Qo/eQo/e Frequency (GHz) Current (pA) Qo/eQo/e B-field on a SQUID Superconducting single Cooper-pair box

Y. Nakamura, Yu. A. Pashkin & J. S. Tsai Non-adiabatic trigger tt Without pulses With pulses t coherence = h / E J JQP current Nature, v. 398, p. 386, Apr, 1999 Pulse-induced current (pA) Pulse width  t (ps) t coherence = h / E J Coherent control of macroscopic quantum states in a single-Cooper-pair box coherent evolution Superconducting single Cooper-pair box

PRL, 88, Jan, 2002 Hamiltonian in a spin-1/2 notation: Charge Echo in a Cooper-Pair Box Y. Nakamura,Yu. A. Pashkin, T. Yamamoto, and J. S. Tsai oscillation period = 15 ps  t=80ps 0.45e Measuring time 20 ms  10 5 ensembles x y z  0 0  1 1

Manipulating the Quantum State of an Electrical Circuit D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M. H. Devoret Science 296, 886, May 2002 Capacitor-shunted Superconducting Single Electron Transistor Ramsey fringe experiment

Single Josephson Junction: Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction Yang Yu, Siyuan Han, Xi Chu, Shih-I Chu, Zhen Wang, Science, 296, 889 May (2002) A 10  m×10  m NbN/AlN/NbN tunnel junction Population of the upper level:   : on resonance Rabi oscillation frequency detuning  decay rate  5  s at i b =0.993I C,  /2  =16.5GHz,  t mw =0.1ms, T=8mK Tunneling probability density P(t)   11  0 ~  < 5 Mrad/s

Rabi Oscillations in a Large Josephson-Junction Qubit John M. Martinis, S. Nam, and J. Aumentado, PRL, 89, , Sep. 2002

Flux Qubit in a rf SQUID Hamiltonian in a spin-1/2 notation: In large self-inductance L limit: For, the first two terms forms a double well potential Effective two-state system formed by the lowest states in the two wells

Charge: Theories: Shnirman, A., G. Schon, and Z. Hermon, 1997, ‘‘Quantum manipulations of small Josephson junctions,’’ Phys. Rev. Lett. 79, Shnirman, A., and G. Schon, 1998, ‘‘Quantum measurements performed with a single-electron transistor,’’ Phys. Rev. B 57, Makhlin, Y., G. Schon, and A. Shnirman, 1999, ‘‘Josephson-junction qubits with controlled couplings,’’ Nature (London) 386, 305. Averin, D. V., 1998, ‘‘Adiabatic quantum computation with Cooper pairs,’’ Solid State Commun. 105, 659. Experiments: Bouchiat, V., 1997, Ph.D. thesis (Universite´ Paris VI). Nakamura, Y., C. D. Chen, and J. S. Tsai, 1997, ‘‘Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by Josephson coupling,’’ Phys. Rev. Lett. 79, Nakamura, Y., Y. A. Pashkin, and J. S. Tsai, 1999, ‘‘Coherent control of macroscopic quantum states in a single-Cooper-pair box,’’ Nature (London) 398, 786. Flux: Theories: Ioffe, L. B., V. B. Geshkenbein, M. V. Feigelman, A. L. Fauche´ re, and G. Blatter, 1999, ‘‘Quiet sds Josephson junctions for quantum computing,’’ Nature (London) 398, 679. Mooij, J. E., T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, 1999, ‘‘Josephson persistent current qu-bit,’’ Science 285, Experiments: Friedman, J. R., V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, 2000, ‘‘Detection of a Schroedinger’s cat state in an rf-SQUID,’’ Nature (London) 406, 43. van der Wal, C. H., A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, 2000, ‘‘Quantum superposition of macroscopic persistent-current states,’’ Science 290, 773. Cosmelli, C., P. Carelli, M. G. Castellano, F. Chiarello, R. Leoni, and G. Torrioli, 1998, in Quantum Coherence and Decoherenc e– ISQM ’98, edited by Y. A. Ono and K. Fujikawa (Elsevier, Amsterdam), p. 245.