Slide presentation Notes_03.ppt In the preceding slide presentation, we got to the point that detected no difference in the speed of light propagating.

Slides:



Advertisements
Similar presentations
Classical Relativity Galilean Transformations
Advertisements

Caroline Chisholm College
relativity Quantum Classic physics Modern physics.
Theory of Special Relativity
Cutnell/Johnson Physics 7th edition
Lecture Three. Michelson-Morley Experiment Principle of Relativity Laws of mechanics are the same in all inertial frames of reference. namely Laws of.
Frames of Reference and Relativity
Special Theory of Relativity
Physics 3 for Electrical Engineering Ben Gurion University of the Negev
Speed of Light How fast is the speed of light? –depends on material: – in vacuum, c = 3 x 10 8 m/s What is this speed relative to? What is the speed of.
Relativity Pierre-Hugues Beauchemin PHY 006 –Talloire, May 2013.
1 Special Relativity (Ch 37) Modern physics special relativity quantum mechanics Both were developed to explain the “few remaining puzzles” of classical.
Slide show Notes_04.ppt Another effect emerging from the Einstein’s postulates: Length contraction. We now turn the “light-clock” sideways. Suppose that.
Principle of special relativity Their is inconsistency between EM and Newtonian mechanics, as discussed earlier Einstein proposed SR to restore the inconsistency.
Life in the fast lane: the kinematics of Star Trek.
Chapter 37 Special Relativity. 37.2: The postulates: The Michelson-Morley experiment Validity of Maxwell’s equations.
Life in the fast lane: the kinematics of Star Trek.
2. Einstein's postulates in special theory of relativity
18 September 2001Astronomy 102, Fall Einstein at Caltech, 1933 Today in Astronomy 102: relativity In the next five lectures we will discuss Einstein’s.
Chapter 26 Lorentz Transform Michelson/Morley Experiment.
Module 3Special Relativity1 Module 3 Special Relativity We said in the last module that Scenario 3 is our choice. If so, our first task is to find new.
2.1The Apparent Need for Ether 2.2The Michelson-Morley Experiment 2.3Einstein’s Postulates 2.4The Lorentz Transformation 2.5Time Dilation and Length Contraction.
Review of Special Relativity At the end of the 19 th century it became clear that Maxwell’s formulation of electrodynamics was hugely successful. The theory.
Introduction to special relativity
Special Theory of Relativity
Page 1 Phys Baski Relativity I Topic #9: Special Relativity I Transformation of Variables between Reference Frames –Non-relativistic Galilean Transformation.
Special relativity.
Chapter R2 Synchronizing Clocks. Newtonian time Time was held to be universal. Clocks ran the same in all inertial systems. In these systems if one system.
Special Theory of Relativity Space and Time. Inertial reference frames Reference frames in which Newton’s first law is valid. –In other words, a reference.
1 Special Theory of Relativity. 2 Introduction In 1905, Albert Einstein changed our perception of the world forever. He published the paper "On the Electrodynamics.
Welcome to our Special Relativity Minicourse Brought to you by Quarknet Physics Department of the University of Houston Physics and Astronomy Department.
Special Relativity Space and Time. Spacetime Motion in space is related to motion in time. Special theory of relativity: describes how time is affected.
The Special Theory of Relativity. Galilean-Newtonian Relativity Definition of an inertial reference frame: One in which Newton’s first law is valid Earth.
 Newtonian relativity  Michelson-Morley Experiment  Einstein ’ s principle of relativity  Special relativity  Lorentz transformation  Relativistic.
1 PH604 Special Relativity (8 lectures) Books: “Special Relativity, a first encounter”, Domenico Giulini, Oxford “Introduction to the Relativity Principle”,
Relativity Introduction 14.1 Introduction Electrons can be accelerated to 0.99c using a potential difference of 3.1 MV According to Newtonian Mechanics,
Time Dilation We can illustrate the fact that observers in different inertial frames may measure different time intervals between a pair of events by considering.
Welcome to our Special Relativity Minicourse Brought to you by Quarknet Physics Department of the University of Houston Physics and Astronomy Department.
Modern Physics Relativity 1 Space is defined by measurements of length and depends on what “ruler” is used to measure the length. Time is defined by measurements.
Special Relativity I wonder, what would happen if I was travelling at the speed of light and looked in a mirror?
Module 6Aberration and Doppler Shift of Light1 Module 6 Aberration and Doppler Shift of Light The term aberration used here means deviation. If a light.
Astronomy 1143 – Spring 2014 Lecture 18: Special Relativity.
The Theory of Special Relativity. Learning Objectives  Einstein’s two postulates in his theory of special relativity: The principle of relativity. (Same.
Phy 107 Fall From Last Time Physics changed drastically in the early 1900’s Relativity one of the new discoveries –Changed the way we think about.
Physics 12 MODERN PHYSICS: AN INTRODUCTION.  QUOTE AND CLIP OF.
Introduction Classical Physics Laws: Mechanics (Newton), Electromagnetism (Maxwell), Optics, Fluids,.. Etc. Modern Physics: What do we mean? Are the laws.
Special Relativity 1. Quiz 1.22 (10 minutes) and a few comments on quiz So far we know that Special Relativity is valid for all speeds. But it is.
Chapter 26 Relativity. General Physics Relative Motion (Galilean Relativity) Chapter 3 Section 5
IB Physics – Relativity Relativity Lesson 1 1.Galilean Transformations (one frame moving relative to another) Michelson Morley experiment– ether. 2.Speed.
Physics 1202: Lecture 19 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc.
Unit 13 Relativity.
Module 1Newtonian Relativity1 Module 1 Newtonian Relativity What do we mean by a “theory of relativity”? Let’s discuss the matter using conventional terminology.
Chapter 39 Relativity. A Brief Overview of Modern Physics 20 th Century revolution 1900 Max Planck Basic ideas leading to Quantum theory 1905 Einstein.
R1 Everything should be made as simple as possible, but not simpler -A. Einstein.
Chapter 1 Relativity 1.
SPECIAL THEORY OF RELATIVITY. Inertial frame Fig1. Frame S’ moves in the +x direction with the speed v relative to frame S.
Galileo’s Relativity: Text: The laws of mechanics are the same in all inertial reference frames. More general: The laws of mechanics are the same in all.
X’ =  (x – vt) y’ = y z’ = z t’ =  (t – vx/c 2 ) where   1/(1 - v 2 /c 2 ) 1/2 Lorentz Transformation Problem: A rocket is traveling in the positive.
Relativity. Historical Development 1600s Newton discovered his laws of mechanics Applied to a wide variety of problems over the next two decades Worked.
Special Relativity How does light behave in moving reference frames?
There is no universal, ‘absolute’ time in relativity Einstein postulated that the velocity of light c is the same for all observers. That led to the consequence.
Special Relativity (Math)  Reference from Tipler chapter 39-1 to 39-3  Newtonian relativity  Einstein’s postulates  Lorentz transformation  Time dilation.
V Galileo: The object would land at the base of the mast. Therefore, an observer on a ship, moving (with respect to land at velocity v) will observe the.
PHYS 342: More info The TA is Meng-Lin Wu: His is His office hour is 10:30am to 12pm on Mondays His office is Physics.
Special Relativity and Time Dilation
UNIT-III RIGID BODY DYNAMICS
PHYS 3313 – Section 001 Lecture #5
An Introduction To ‘High Speed’ Physics
PHYS 3700 Modern Physics Prerequisites: PHYS 1212, MATH Useful to have PHYS 3900 or MATH 2700 (ordinary differential equations) as co-requisite,
PHYS 3313 – Section 001 Lecture #5
Presentation transcript:

Slide presentation Notes_03.ppt In the preceding slide presentation, we got to the point that detected no difference in the speed of light propagating in the same direction as Earth in its orbital motion, and in the opposite direction. There were to possible explanations: (a)Ether does exist, but for some reasons light does not obey the Galilean Transformation; and (b) There is no such thing as “cosmic ether”. At the end of XIX-th century the “ether theory” was so firmly embedded in physicists’ minds that for most of them option (b) seemed dubious, or even “heretical” (heresy is a dissent or deviation from a dominant theory, such as, e.g., a religious dogma). There were many attempts to find explanations of the results of Michelson-Morley experiments that would require the rejection of ether. One such explanation that gained much popularity and was supported by Michelson, was the “ether dragging” hypothesis (it was not new at that time, physicists had started speculating about possible “ether dragging effects” long before Michelson and Morley made their historic experiment.

Problems with classical relativity… About the same time when Michelson was performing his experiments, physicists became aware of one more puzzling fact. There was something wrong with Galilean Transformation… One fundamental principle that seemed quite obvious to everybody was the following: “Laws of physics should be the same in all inertial frames, even if they move relative to each other”. In other words, if we apply the Galilean Transformation to the equations expressing a given law, the equations should not change. This principle can be summarized in a single short sentence: The laws of physics should be invariant with respect to the Galilean Transformation. For instance: take Newton’s Second Law: We showed (see Notes_01.ppt, Slide 22) that the Galilean Transformation does not change the acceleration in a moving frame – so, the Second Law In this frame does not change, either! Equivalently, one can say: The Newton’s Second Law is invariant with Respect to the Galilean Transformation.

Problems with the Galilean Transformation… About the same time as Michelson failed to detect ether motion, other physicist noticed that the famous Maxwell Equations are NOT INVARIANT with respect to the Galilean Transformation! The transformation, with respect to which the Maxwell Equations were Found to invariant, was an “exotic” transformation formula discovered In 1905 by a Dutch physicist and mathematician, Hendrik Lorentz. Albert Einstein appears on the stage… Lorentz was a friend and mentor of Albert Einstein, a much younger physicist (in 1905, Einstein’s age, 26, was exactly one-half of Lorentz’s age). Einstein’s young age was probably a “favorable factor” in what happened next. Young people are courageous. And what Einstein did, indeed required a big dose of courage. Namely, in his historic 1905 paper Einstein formulated a “revolutionary” postulate: The speed of light is the same in all frames of reference, no matter what their own speed is.

Einstein’s revolutionary theory Einstein explained his revolutionary postulate by the idea that not only Maxwell Equations are invariant with respect to the Lorentz Transformation – it is all laws of physics that obey this transformation. But what about the Galilean Transformation – is it no longer valid?!! How comes? It does work well in all Newtonian mechanics, and in many other known physical phenomena… The Galilean Transformation, Einstein explained, is the limit of of the Lorentz Transformation when the relative speed u of the two frames of reference becomes very small: u → 0. But what does “very small” mean in practice? It means that u has to be much, much smaller than the speed of light c. The speed of light is approximately km/s, or miles/s. Think of fastest objects we can deal with on Earth or the outer space we travel to. How fast they are? Please answer. The fastest object the humanity has had a “close encounter” with since the beginning of our civilization was probably the “Tunguska Meteorite” that exploded over Siberia exactly 100 years ago. Its speed could be as high as 50 km/s (31 miles/s). 31 miles/s is still an extremely small number compared with c. So, in most conceivable “on-Earth” situations it is OK to use the Galilean Transformation.

Relativity of time To measure time, we use clocks. The hearth of any clock is a “pacemaker”. In the old “grandpa clocks” it was a swinging pendulum. When I was young, “quartz clocks”, in which an oscillating quartz crystal is the “pacemaker”, were huge and very expensive devices of the size of a refrigerator. Today, you can buy one for a few $$, and you carry it on your wrist. In atomic clocks – the most accurate existing clocks, one second per million years! – the “pacemaker” is a beam of Cesium atoms oscillating between two energy states. Well, but since the speed of light is constant, why shouldn’t we use LIGHT as a “pacemaker”?

“Light clock” One of the favorite Einstein’s “tools” he used in his considerations were “gedankenexperiments”, or “thought experiments” (in German, which was Einstein’s native tongue, “Gedanken” means “a thought”). Here is a definition from Wikipedia: A thought experiment (from the German Gedankenexperiment) is a proposal for an experiment that would test a hypothesis or theory but cannot actually be performed due to practical limitations; instead its purpose is to explore the potential consequences of the principle in question. Famous examples of thought experiments include Schroedinger's cat… The “light clock” is a gedankenexperi- ment tool. It consists of a flash bulb that sends a light pulse to a mirror, L 0 apart. When the back-reflected pulse reaches the detector D, it generates a signal that triggers another flash from the bulb. So, the bulb flashes at regular time intervals Δt = 2L 0 /c.

Light clock operation How the light clock works, it is shown in this animation – but look only at the first frame (we will look at the following frames in a moment). Click here: (1) relatvisticclocksrelatvisticclocks There are more such animations: (2) TimeDilationTimeDilation and (3) Now, there comes a very important moment. Suppose that two such light clocks are located in two reference frames, O and O’ (in the animation (3) the observer’s name in O is Jack, and in O’ is Jill). In both frames the bulb is located at the origin, and the back-reflecting mirror is on the Y axis (i. e., the vertical axis). When the two frames do not move relative to each other, each observer sees the same frequency of flashing in his/her own frame, and in the other frame.

The relativity of time Now comes a very important moment in our reasoning. Suppose that now the O and O’ frames move relative to each other Along the X (horizontal) axis with constant velocity u. Let’s look at this animation: relatvisticclocksrelatvisticclocks After clicking twice on “Next”, we will see how the observer in O sees the situation in his/her own frame (right side of the screen) and in the moving frame. The observer in O sees the clock in O operating in a “normal” way. However, the situation in O’ now looks different to him/her: the bulb in O’ flashes, but before the light signal reaches the mirror, the mirror travels some distance to the right. So, the observer in O sees that the light traveled along a slanted path – i.e., a longer path than in his/her “own” clock. And a similar thing happens to the back-reflected signal: before it reaches the detector, the detector moves some distance to the right, so the path traveled by the signal on the way back is again longer than in the O clock. If you click on “Next” one more time, the program will display the paths traveled by the light signals in both frames – let’s stress: as seen by the observer in the O frame.

Continued from the preceding slide: Now comes the moment when we have to use the Einstein’s postulate that the speed of light is the same and equal c for observers in all frames! The observer in the O frame “saw” that the light signal in O’ traveled along the slanted paths shown by red lines in the animation. Suppose that the time interval between the two flashes in O’ he/she registered was Δt’. So, the length of each slanted path section was cΔt’/2. And, for the O observer, between the two flashes the (bulb+detector) unit in O’ moved by a distance uΔt’ along the X axis. From the line plot in the animation, one can readily see that: From which we obtain:

Continued from the preceding slide (2): After more manipulations: So, this is the time interval between two flashes in the O’ frame that the observer in O’ registers. But his/her “own” clock flashes at time Intervals: And both clocks, let’s stress it are identical!! Conclusion?

Continued from the preceding slide (3): The conclusion is that: (“always” = if the frames are in motion relative to each other) it means that observer O sees that the clock in O’ runs slower than in O – in other words, time passes slower in O’. Now, there is an important question: does then the observer in O’ see that the clock in O runs FASTER than his/her “own” clock? Answer: No, the observer in O’ “sees” exactly the same as the O’ observer – it is his/her clock that runs faster than the clock in O. Does it make sense? Definitely, it is difficult to answer enthusiastically “Yes, of course!”