Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011.

Slides:



Advertisements
Similar presentations
机电耦合系数 electro-mechanical coupling factor
Advertisements

首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
空间群 space groups 晶轴和直角坐标轴
基本知识和几何要素的投影 模块一: 字体练习 第一章 制图的基本知识与基本技能 题目提示返回.
实验:验证牛顿第二定律. 1 、实验目的:探究 a 与 F 、 m 的定量关系 2 、实验原理:控制变量法 A 、 m 一定时,探究 a 随 F 的变化关系 B 、 F 一定时, 探究 a 随 m 的变化关系.
一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间
平衡态电化学 化学电池 浓差电池 电极过程动力学.
计算机 在分析化学的应用 ( 简介 ) 陈辉宏. 一. 概述 信息时代的来临, 各门学科的研究方法都 有了新的发展. 计算机的介入, 为分析化学的进展提供了 一种更方便的研究方法.
4 第四章 矩阵 学时:  18 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 矩阵的运算,可逆矩阵,初等矩阵及其性质和意义, 分块矩阵。  教学目的:  1 .使学生理解和掌握矩阵等价的相关理论  2 .能熟练地进行矩阵的各种运算.
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
两极异步电动机示意图 (图中气隙磁场形象地 用 N 、 S 来表示) 定子接三相电源上,绕组中流过三相对称电流,气 隙中建立基波旋转磁动势,产生基波旋转磁场,转速 为同步速 : 三相异步电动机的简单工作原理 电动机运行时的基本电磁过程: 这个同步速的气隙磁场切割 转子绕组,产生感应电动势并在 转子绕组中产生相应的电流;
摘要:从有小角度偏转的平行板电容器电 容计算出发,用解析函数的性质计算几种 非平行板电容器电容及电场分布,并用保 形变换进行空间的伸张和扭曲,最后对结 果进行讨论。 关键词:非平行板电容器、电容器、电容、 电场强度、空间变换、保形变换。
第 4 章 抽象解释 内容概述 以一种独立于编程语言的方式,介绍抽象解释的 一些本质概念 – 将 “ 程序分析对语言语义是正确的 ” 这个概念公式 化 – 用 “ 加宽和收缩技术 ” 来获得最小不动点的较好的 近似,并使所需计算步数得到限制 – 用 “ 伽罗瓦连接和伽罗瓦插入 ” 来把代价较大的属 性空间用代价较小的属性空间来代替.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
例9:例9: 第 n-1 行( -1 )倍加到第 n 行上,第( n-2 ) 行( -1 )倍加到第 n-1 行上,以此类推, 直到第 1 行( -1 )倍加到第 2 行上。
论匀强磁场条件下磁通回 路的取法 物理四班 物理四班 林佳宁 (PB ) 林佳宁 (PB ) 指导老师 : 秦敢 指导老师 : 秦敢.
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
实验一: 信号、 系统及系统响应 1 、实验目的 1 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时 域采样定理的理解。 2 熟悉时域离散系统的时域特性。 3 利用卷积方法观察分析系统的时域特性。 4 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里 叶变换对连续信号、 离散信号及系统响应进行频域分析。
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
实验三: 用双线性变换法设计 IIR 数字滤波器 一、实验目的 1 熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法。 2 掌握数字滤波器的计算机仿真方法。 3 通过观察对实际心电图信号的滤波作用, 获得数字滤波的感性知 识。
第四章 平面 §4-1 平面的表示法 §4-1 平面的表示法 §4-2 各种位置平面的投影特性 §4-2 各种位置平面的投影特性 §4-3 属于平面的点和直线 §4-3 属于平面的点和直线 基本要求 基本要求.
电荷传递之处.
第二章 贝叶斯决策理论 3学时.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
§2.2 一元线性回归模型的参数估计 一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计( OLS ) 三、参数估计的最大或然法 (ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计.
第2章 激光器的工作原理 回顾 ——产生激光的三个必要条件: 1. 工作物质 2. 激励能源 3. 光学谐振腔
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
9的乘法口诀 1 .把口诀说完全。 二八( ) 四六( ) 五八( ) 六八( ) 三七( ) 三八( ) 六七( ) 五七( ) 五六( ) 十六 四十八 四十二 二十四 二十一 三十五 四十 二十四 三十 2 .口算, 并说出用的是哪句口诀。 8×8= 4×6= 7×5= 6×8= 5×8=
1/108 随机信号分析. 2/116 第 2 章 随机信号 3/ 定义与基本特性 2.2 典型信号举例 2.3 一般特性与基本运算 2.4 多维高斯分布与高斯信号 2.5 独立信号 目 录.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
平衡态电化学 化学电池 浓差电池. 平衡态电化学 膜电势 化学电池浓差电池 电极过程动力学 Electrode Kinetics 极 化 Polarization.
平行线的平行公理与判定 九年制义务教育七年级几何 制作者:赵宁睿. 平行线的平行公理与判定 要点回顾 课堂练习 例题解析 课业小结 平行公理 平行判定.
11.5 含源二端口网络 章节内容 (2) 11.6 运算放大器电路 11.7 回转器和负阻抗变换器 11.8 应用.
一. 机械波产生的条件 ---- 波源和介质 F 机械波源:作机械振动的物体 F 弹性介质:质元之间彼此有弹性 力联系的物质 § 16-1 机械波的产生和传播 二. 两类机械波 ---- 横波和纵波  横波:质元的振动方向与波动 的传播方向垂直.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
初中几何第三册 弦切角 授课人: 董清玲. 弦切角 一、引入新课: 什么是圆心角、圆周角、圆周角定理的内容是什么? 顶点在圆心的角叫圆心角。 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 A B′ C B O.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
1-4 节习题课 山东省淄博第一中学 物理组 阚方海. 2 、位移公式: 1 、速度公式: v = v 0 +at 匀变速直线运动规律: 4 、平均速度: 匀变速直线运动 矢量式 要规定正方向 统一单位 五个量知道了三 个量,就能求出 其余两个量 3 、位移与速度关系:
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
Introduction to Automatic Control The Laplace Transform Li Huifeng Tel:
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
1 物体转动惯量的测量 南昌大学理学院
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
第三章 正弦交流电路.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
第四章 不定积分. 二、 第二类换元积分法 一、 第一类换元积分法 4.2 换元积分法 第二类换元法 第一类换元法 基本思路 设 可导, 则有.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
第 11 章 旋转电机交流绕组的电势和磁势 内 容 提 要内 容 提 要  旋转磁场是交流电机工作的基础。  在交流电机理论中有两种旋转磁场: (1) 机械旋转磁场(二极机械旋转磁场,四极机械旋转磁场) (2) 电气旋转磁场(二极电气旋转磁场,四极电气旋转磁场)二极机械旋转磁场四极机械旋转磁场二极电气旋转磁场四极电气旋转磁场.
3D 仿真机房建模 哈尔滨工业大学 指导教师:吴勃英、张达治 蒋灿、杜科材、魏世银 机房尺寸介绍.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
高 频 电 子 线 路高 频 电 子 线 路 主讲 元辉 5.5 晶体振荡器 石英晶体振荡器的频率稳定度 1 、石英晶体谐振器具有很高的标准性。 、石英晶体谐振器与有源器件的接入系数通常近似 如下 受外界不稳定因素的影响少。 3 、石英晶体谐振器具有非常高的值。 维持振荡频率稳定不变的能力极强。
Presentation transcript:

Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011

在双量子点上基本性质的测量 由 HoneyComb Pattern 来推算电容 由 HoneyComb Pattern 来估测能量转换因子 由激发态来测量量子点内部能级 由输运的电流的大小来推算 tunnel rate 和 tunnel coupling

1. 由 Honey Comb 来推算电容 Double Dot 电容模型(忽略交互电容) Double Dot 电容模型(完整模型)

在小偏压以及忽 略电极与量子点 之间的交互影响 的情况下的电化 学势表达式 完整的表达式

电容的提取 通过 Honeycomb pattern 提取电压值,来推算电 容

详细解释 1 Honeycomb Pattern 的形成 黑点: 白点:

黑点的电化学势变化过程

(M-1, N) (M, N-1) (M, N) (M, N+1) 这两个点的第一个量子点的电 化学势相等,即 带入表达式,得到

(M-1, N) (M, N-1) (M, N) (M, N+1) 这两个点的第二个量子点的电 化学势相等,同理可得:

(M-1, N) (M, N-1) (M, N) (M, N+1) 这两个点的第一个量子点对应 ( M, N) 和 (M, N+1) 的电化学势 相等,都为 0 ,即 带入表达式,得到

(M-1, N) (M, N-1) (M, N) (M, N+1) 这两个点的第二个量子点对应 ( M+1, N) 和 (M, N) 的电化学势 相等,都为 0 ,同理可得:

2. 由 HoneyComb Pattern 来估测能量转换因子 三角形的边界由下面几个条件决定: 相当于量子点的能级在源和漏的窗口之间

这种斜率的线代表两条能级 同升同降 这种斜率的线代表第一个量 子点的能级不变 这种斜率的线代表 第二个量子点的能 级不变 三角形内部平行线是量子点激发态的反映

两者的电化学势在( 1 , 1 ) 下相差 eV ,列出表达式, 可以解出: 在 C1,C2>>Cm 时,公式可简 化为:

两者的电化学势在( 1 , 1 ) 下相差 eV ,列出表达式, 可以解出: 在 C1,C2>>Cm 时,公式可简 化为: 因为 Vsd 所对应的是能量,由此便得到了 Vg1 和 Vg2 的能量转换因子

测量方法 1 由前面所计算出的能量转换因子将横纵坐标转 化为能量。 Vandersypen 文章中图没有转换是因 为他们所得的转换因子对两个量子点是相等的。 2 将电流大小对 detuning 作图, detuning=E1-E3 。 得到下图: 3 观察第一个峰与第二个峰之间的失谐量之 差的 被,即为激发态的能级间距。(第 二个图为反向偏置,电流为负值,观察它的 电流谷之间的距离) 3. 由激发态来测量量子点内部能级

对于上面的实验数据的讨论 理想数据的形状: 此时在乘上能量转换因子之后, 所得到的三角形应该是等边三角 形,而实验所得的图像是偏离等 边三角形的,有两个原因: 1 能量转换因子算的不够准确 2 两个三角形交叠在一起增大了 底边的长度

4. 由输运的电流的大小来推算 tunnel rate 和 tunnel coupling 做法: 1 沿着图中所示的直线进行扫描, 测量直流电流的大小。 2 对基态的峰使用表达式 进行拟合 3 提取 tunnel rate 和 interdot tunnel rate

拟合公式的推导 使用密度矩阵方法 蓝色部分由量子点与源和漏的跃迁 给出,其余部分由量子态的演变公 式:

将上面的四个公式写成矩 阵的形式,可以得到一个 常微分方程: 得到静态解。将这个静态带入 电流的表达式, 得到电流的表达式: 当 T<<GammaR 和 GammaL 时,可以得 到表达式为: 公式里漏了 e 与前面的表达式: 一致