Superspace Sigma Models IST String Fest Volker Schomerus based on work w. C. Candu, C.Creutzig, V. Mitev, T Quella, H. Saleur; 2 papers in preparation.

Slides:



Advertisements
Similar presentations
 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
Advertisements

On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,
Instantons in Deformed Supersymmetric Gauge Theories Shin Sasaki (University of Helsinki) Based on the work [hep-th/ JHEP 07 (2007) 068 ] [hep-th/ ,
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
1 Real forms of complex HS field equations and new exact solutions Carlo IAZEOLLA Scuola Normale Superiore, Pisa Sestri Levante, June (C.I., E.Sezgin,
Interacting Fermionic and Bosonic Topological Insulators, possible Connection to Standard Model and Gravitational Anomalies Cenke Xu 许岑珂 University of.
INSTANTON PARTITION FUNCTIONS Nikita Nekrasov IHES (Bures-sur-Yvette) & ITEP (Moscow)QUARKS-2008 May 25, 2008 Nikita Nekrasov IHES (Bures-sur-Yvette) &
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Coulomb energy, remnant symmetry in Coulomb gauge, and phases of.
SPECTRAL FLOW IN THE SL(2,R) WZW MODEL Carmen A. Núñez I.A.F.E. & UBA WORKSHOP: New Trends in Quantum Gravity Instituto de Fisica, Sao Paulo Septembre.
Exact string backgrounds from boundary data Marios Petropoulos CPHT - Ecole Polytechnique Based on works with K. Sfetsos.
A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:
Summing the Instantons in the Heterotic String Jock McOrist University of Chicago , with Ilarion Melnikov October 28 th, Rutgers University.
Boundaries in Rigid and Local Susy Dmitry V. Belyaev and Peter van Nieuwenhuizen.
The superconformal index for N=6 Chern-Simons theory Seok Kim (Imperial College London) talk based on: arXiv: closely related works: J. Bhattacharya.
Road to the MSSM thru M theory ? Stuart Raby University of Michigan Ann Arbor May 5, 2007.
Happy 120 th birthday. Mimeograph Constraining Goldstinos with Constrained Superfields Nathan Seiberg IAS Confronting Challenges in Theoretical Physics.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Matrix factorisations and D-branes Matthias Gaberdiel ETH Zürich Cambridge, 3 April 2006.
Quantum Entanglement and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research and Dubna University “Gravity in three dimensions”, ESI Workshop,
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Fluctuation Partition Function of a Wilson Loop in a Strongly Coupled N=4 SYM Plasma Defu Hou (CCNU), James T.Liu (U. Michigan) and Hai-cang Ren (Rockefeller.
Electric-Magnetic Duality On A Half-Space Edward Witten Rutgers University May 12, 2008.
Supersymmetry in Particle Physics
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
Exact Supersymmetry on the Lattice Noboru Kawamoto (Hokkaido University) CFT and Integrability In memory of Alexei Zamolodchikov Dec.18, Seoul.
A.F.Kord Sabzevar Tarbiat Moallem University (Iran) September 2011.
Extra Dimensional Models with Magnetic Fluxes Tatsuo Kobayashi 1. Introduction 2. Magnetized extra dimensions 3. N-point couplings and flavor symmetries.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Constraining theories with higher spin symmetry Juan Maldacena Institute for Advanced Study Based on & to appearhttp://arxiv.org/abs/
STRING THEORY on ADS 3 and ADS 3 /CFT 2 SOME OPEN PROBLEMS Carmen A. Núñez I.A.F.E –CONICET-UBA II Workshop Quantum Gravity Sao Paulo, September 2009.
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv: Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv:
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
HIGHER SPIN SUPERGRAVITY DUAL OF KAZAMA-SUZUKI MODEL Yasuaki Hikida (Keio University) Based on JHEP02(2012)109 [arXiv: [hep-th]]; arXiv:
The Geometry of Moduli Space and Trace Anomalies. A.Schwimmer (with J.Gomis,P-S.Nazgoul,Z.Komargodski, N.Seiberg,S.Theisen)
Lattice studies of topologically nontrivial non-Abelian gauge field configurations in an external magnetic field in an external magnetic field P. V. Buividovich.
Higgs branch localization of 3d theories Masazumi Honda Progress in the synthesis of integrabilities arising from gauge-string Hotel Biwako.
The Topological String Partition Function as a Wave Function (of the Universe) Erik Verlinde Institute for Theoretical Physics University of Amsterdam.
AGT 関係式 (2) AGT 関係式 (String Advanced Lectures No.19) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 9 日(水) 12:30-14:30.
World-sheet Scattering in AdS 5 xS 5 Konstantin Zarembo (Uppsala U.) Random Matrix Theory: Recent Applications, Copenhagen, T.Klose, T.McLoughlin,
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
Large N reduction and supersymmetry MCFP Workshop on Large N Gauge Theories, May 13-15, 2010, University of Maryland, College Park Jun Nishimura (KEK Theory.
Discrete R-symmetry anomalies in heterotic orbifold models Hiroshi Ohki Takeshi Araki Kang-Sin Choi Tatsuo Kobayashi Jisuke Kubo (Kyoto univ.) (Kanazawa.
Wilsonian approach to Non-linear sigma models Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics.
1 “Y-formalism & Curved Beta-Gamma Systems” P.A. Grassi (Univ. of Piemonte Orientale) M. Tonin (Padova Univ.) I. O. (Univ. of the Ryukyus ) N.P.B (in press)
Extra Dimensional Models with Magnetic Fluxes Tatsuo Kobayashi 1. Introduction 2. Magnetized extra dimensions 3. Models 4 . N-point couplings and flavor.
9/10/2007Isaac Newton Institute1 Relations among Supersymmetric Lattice Gauge Theories So Niels Bohr Institute based on the works arXiv:
2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv: [hep-th]
1 Superstring vertex operators in type IIB matrix model arXiv: [hep-th], [hep-th] Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK &
Higher spin AdS 3 holography and superstring theory Yasuaki Hikida (Rikkyo University) Based on collaborations with T. Creutzig (U. of Alberta) & P. B.
Heidelberg, June 2008 Volker Schomerus - DESY Hamburg - Of Mesons and Metals – Bethe & the 5th Dimension.
Three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP) hep-th/
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Seiberg Duality James Barnard University of Durham.
} } Lagrangian formulation of the Klein Gordon equation
Boundary conditions for SU(2) Yang-Mills on AdS 4 Jae-Hyuk Oh at 2012 workshop for string theory and cosmology, Pusan, Korea. Dileep P. Jatkar and Jae-Hyuk.
Ramond-Ramond Couplings of D-branes Collaborators: Koji Hashimoto (Osaka Univ.) Seiji Terashima (YITP Kyoto) Sotaro Sugishita (Kyoto Univ.) JHEP1503(2015)077.
Brief review of basic string theory Bosonic string Superstring three different formulations of superstring (depending on how to deal with the fermionic.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
Cenke Xu 许岑珂 University of California, Santa Barbara Stable 2+1d CFT at the Boundary of a Class of 3+1d Symmetry Protected Topological States.
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
1 Marginal Deformations and Penrose limits with continuous spectrum Toni Mateos Imperial College London Universitat de Barcelona, December 22, 2005.
Equivariant A-twisted GLSM and Gromov-Witten invariants
Lagrange Formalism & Gauge Theories
Quantum properties of supersymmetric gauge theories
Principal Chiral Model on Superspheres
with Erich Poppitz (u of Toronto)
Current Status of Exact Supersymmetry on the Lattice
Presentation transcript:

Superspace Sigma Models IST String Fest Volker Schomerus based on work w. C. Candu, C.Creutzig, V. Mitev, T Quella, H. Saleur; 2 papers in preparation

Superspace Sigma Models Aim: Study non-linear sigma models with target space supersymmetry not world-sheet Properties: Weird: logarithmic Conformal Field Theories! Remarkable: Many families with cont. varying exponents Focus on scale invariant QFT, i.e. 2D CFT Strings in AdS backgrounds [pure spinor] c = 0 CFTs; symmetry e.g. PSU(2,2|4)...

Plan of 2 nd Lecture SM on CP 0|1 - Symplectic Fermions Sigma Model on Superspace CP 1|2 Properties of the Chiral Field on CP 1|2 Conclusion & Some Open Problems Exact boundary partition functions Quasi-abelian evolution; Lattice models; Symplectic fermions as cohomology Bulk and twisted Neumann boundary conditions MODELSMODELS METHODSMETHODS

1.1 Symplectic Fermions - Bulk Has affine psu(1|1) sym: Only global u(1) sym. is manifest Action rewritten in terms of currents: Possible modification: θ-angle trivial in bulk U(1) x U(1)

1.1 Symplectic Fermions - Bulk Has affine psu(1|1) sym: Action rewritten in terms of currents: Possible modification: θ-angle trivial in bulk U(1) x U(1)

1.2 SF – Boundary Conditions Implies twisted Neumann boundary conditions: boundary term A with currents: 4 ground states Ground states: λ(Θ 1,Θ 2 ) = λ(tr(A 1 A 2 )) Results: x Θ x Θ 1 Θ 2 In P 0 of u(1|1) twist fields [Creutzig,Quella,VS] [Creutzig,Roenne]

1.3 SF – Spectrum/Partition fct. c/24 U(1) gauging constraint branching functions characters

2.1 The Sigma Model on CP N-1|N 2.1 The Sigma Model on CP N-1|N = a - non-dynamical gauge field D = ∂ - ia z α, η α → ωz α, ωη α → 2 parameter family of 2D CFTs;c = -2 Non-abelian extension of symplectic fermion θ term non-trivial; θ=θ+2π

Boundary condition in σ-Model on target X is hypersurface Y + bundle with connection A 2.2 CP N-1|N – Boundary Conditions Dirichlet BC ┴ to Y; Neumann BC || to Y; U(N|N) symmetric boundary cond. for CP N-1|N line bundles on Y = CP N-1|N with monopole A μ μ integer Spectrum of sections e.g. N=2; μ = 0 ~ (1+14+1) (2n+1) x 16 + superspherical harmonics atypicalstypicals of U(2|2)

2.3 Spectra/Partition Function 2.3 Spectra/Partition Function Count boundary condition changing operators at R = ∞ (free field theory) monopole numbers fermionic contr. bosonic contr. U(1) gauging constraint u(2|2) characters ~ χ (1+14+1) + χ 48 + χ q χ ad +... Built from Z α,Z α,∂ x Z α,... Euler fct for N=2 and μ = ν

Result: Spectrum at finite R Result: Spectrum at finite R Branching fcts from R = ∞ Characters of u(2|2) reps Casimir of U(2|2) universal indep of Λ,N f μν |μ-ν| ~ λ λ = λ(Θ 1,Θ 2 ) from symplectic Fermions

3.1 Quasi-abelian Evolution 3.1 Quasi-abelian Evolution Free Boson: Deformation of conf. weights is `quasi-abelian’ quadratic Casimir [Bershadsky et al] [Quella,VS,Creutzig] [Candu, Saleur] Prop.: Boundary spectra of CP 1|2 chiral field : In boundary theory bulk more involved e.g. (1+14+1) remains at Δ=0; 48, 80,.... are lifted

3.1 Quasi-abelian Evolution Free Boson: at R=R 0 universal U(1) charge Deformation of conf. weights is `quasi-abelian’ quadratic Casimir [Bershadsky et al] [Quella,VS,Creutzig] [Candu, Saleur] Prop.: Boundary spectra of CP 1|2 chiral field : In boundary theory bulk more involved e.g. (1+14+1) remains at Δ=0; 48, 80,.... are lifted

3.2 Lattice Models and Numerics 3.2 Lattice Models and Numerics f 00 level 1 level 2 level 3 w=w(R) Extract f νμ (R) from Δh k = f νμ (R)(C lk -C l0 ) l = μ - ν acts on states space: boundary term no sign of instanton effects

3.3 SFermions as Cohomology U(1) x U(1|2) U(2|2): in 3 of U(1|2) Cohomology of Q arises from states in atypical modules with sdim ≠ 0 Result: [Candu,Creutzig,Mitev,VS] all multiplets of ground states contribute → λ(Θ 1,Θ 2 ) from SF

Conclusions and Open Problems Exact Boundary Partition Functions for CP 1|2 For S 2S+1|S there is WZ-point at radius R = 1 Is there WZ-point in moduli space of CP N-1|N ? Much generalizes to PCM on PSU(1,1|2)! e.g. psu(N|N) at level k=1CP 0|1 = PSU(1|1) k=1 Techniques: QA evolution; Lattice; Q-Cohomology osp(2S+2|2s) at level k=1 [Candu,H.Saleur] [Mitev,Quella,VS] QA evolution, simple subsector AdS 3 x S 3

Examples: Super-Cosets Families v w. compact form, w.o. H-flux: cpct symmetric superspaces OSP(2S+2|2S) OSP(2S+1|2S) → S 2S+1|2S U(N|N) U(N-1|N)xU(1) → CP N-1|N OSP(2S+2|2S) OSP(2S+2-n|2S) x SO(n) U(N|N) U(N-n|N) x U(n) c = 1 c = -2 volume note: c v (GL(N|N)) = 0 = c v (OSP(2S+2|2S)) G/G Z [Candu] [thesis]