Lecture 13 – Tues, Oct 21 Comparisons Among Several Groups – Introduction (Case Study 5.1.1) Comparing Any Two of the Several Means (Chapter 5.2) The One-Way.

Slides:



Advertisements
Similar presentations
BPS - 5th Ed. Chapter 241 One-Way Analysis of Variance: Comparing Several Means.
Advertisements

CHAPTER 25: One-Way Analysis of Variance Comparing Several Means
CHAPTER 25: One-Way Analysis of Variance: Comparing Several Means ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner.
Lecture 6 Outline – Thur. Jan. 29
Copyright ©2006 Brooks/Cole, a division of Thomson Learning, Inc. Analysis of Variance Chapter 16.
Lecture 8 Resistance of two-sample t-tools and outliers (Chapters ) Transformations of the Data (Chapter 3.5)
Copyright ©2011 Brooks/Cole, Cengage Learning Analysis of Variance Chapter 16 1.
Chapter Seventeen HYPOTHESIS TESTING
PSY 307 – Statistics for the Behavioral Sciences
Lecture 23: Tues., Dec. 2 Today: Thursday:
Lecture 7 Outline Levene’s test for equality of variances (4.5.3) Interpretation of p-values (2.5.1) Robustness and resistance of t-tools ( )
Lecture 15: Tues., Mar. 2 Inferences about Linear Combinations of Group Means (Chapter 6.2) Chi-squared test (Handout/Notes) Thursday: Simple Linear Regression.
Lecture 5 Outline – Tues., Jan. 27 Miscellanea from Lecture 4 Case Study Chapter 2.2 –Probability model for random sampling (see also chapter 1.4.1)
Lecture 14 – Thurs, Oct 23 Multiple Comparisons (Sections 6.3, 6.4). Next time: Simple linear regression (Sections )
BCOR 1020 Business Statistics Lecture 22 – April 10, 2008.
Lecture 6 Outline: Tue, Sept 23 Review chapter 2.2 –Confidence Intervals Chapter 2.3 –Case Study –Two sample t-test –Confidence Intervals Testing.
Lecture 19: Tues., Nov. 11th R-squared (8.6.1) Review
PSY 307 – Statistics for the Behavioral Sciences
Lecture 24: Thurs. Dec. 4 Extra sum of squares F-tests (10.3) R-squared statistic (10.4.1) Residual plots (11.2) Influential observations (11.3,
Lecture 9: One Way ANOVA Between Subjects
Lecture 12 One-way Analysis of Variance (Chapter 15.2)
Lecture 9 Today: –Log transformation: interpretation for population inference (3.5) –Rank sum test (4.2) –Wilcoxon signed-rank test (4.4.2) Thursday: –Welch’s.
Chapter 11: Inference for Distributions
Lecture 8 Outline: Tue, Sept 30
Lecture 13: Tues., Feb. 24 Comparisons Among Several Groups – Introduction (Case Study 5.1.1) Comparing Any Two of the Several Means (Chapter 5.2) The.
Week 9 October Four Mini-Lectures QMM 510 Fall 2014.
6.1 - One Sample One Sample  Mean μ, Variance σ 2, Proportion π Two Samples Two Samples  Means, Variances, Proportions μ 1 vs. μ 2.
Chapter 12: Analysis of Variance
F-Test ( ANOVA ) & Two-Way ANOVA
QNT 531 Advanced Problems in Statistics and Research Methods
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 14 Comparing Groups: Analysis of Variance Methods Section 14.2 Estimating Differences.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 2 – Slide 1 of 25 Chapter 11 Section 2 Inference about Two Means: Independent.
More About Significance Tests
Dependent Samples: Hypothesis Test For Hypothesis tests for dependent samples, we 1.list the pairs of data in 2 columns (or rows), 2.take the difference.
LECTURE 21 THURS, 23 April STA 291 Spring
Comparing Two Population Means
Chapter 10 Comparing Two Means Target Goal: I can use two-sample t procedures to compare two means. 10.2a h.w: pg. 626: 29 – 32, pg. 652: 35, 37, 57.
Chapter 11 Inference for Distributions AP Statistics 11.1 – Inference for the Mean of a Population.
+ Chapter 12: Inference for Regression Inference for Linear Regression.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 10 Comparing Two Populations or Groups 10.2.
PSY 307 – Statistics for the Behavioral Sciences Chapter 16 – One-Factor Analysis of Variance (ANOVA)
Psychology 301 Chapters & Differences Between Two Means Introduction to Analysis of Variance Multiple Comparisons.
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
Section 9-1: Inference for Slope and Correlation Section 9-3: Confidence and Prediction Intervals Visit the Maths Study Centre.
1 Nonparametric Statistical Techniques Chapter 17.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 14 Comparing Groups: Analysis of Variance Methods Section 14.1 One-Way ANOVA: Comparing.
AP Statistics Chapter 24 Comparing Means.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 14 Comparing Groups: Analysis of Variance Methods Section 14.3 Two-Way ANOVA.
Chapter 10 The t Test for Two Independent Samples
CHAPTER 27: One-Way Analysis of Variance: Comparing Several Means
6.1 - One Sample One Sample  Mean μ, Variance σ 2, Proportion π Two Samples Two Samples  Means, Variances, Proportions μ 1 vs. μ 2.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 1 – Slide 1 of 26 Chapter 11 Section 1 Inference about Two Means: Dependent Samples.
Hypothesis test flow chart frequency data Measurement scale number of variables 1 basic χ 2 test (19.5) Table I χ 2 test for independence (19.9) Table.
Analysis of Variance STAT E-150 Statistical Methods.
+ Unit 6: Comparing Two Populations or Groups Section 10.2 Comparing Two Means.
Learning Objectives After this section, you should be able to: The Practice of Statistics, 5 th Edition1 DESCRIBE the shape, center, and spread of the.
AP Statistics Chapter 24 Comparing Means. Objectives: Two-sample t methods Two-Sample t Interval for the Difference Between Means Two-Sample t Test for.
The 2 nd to last topic this year!!.  ANOVA Testing is similar to a “two sample t- test except” that it compares more than two samples to one another.
Class Six Turn In: Chapter 15: 30, 32, 38, 44, 48, 50 Chapter 17: 28, 38, 44 For Class Seven: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 Read.
Two-Sample Hypothesis Testing
CHAPTER 10 Comparing Two Populations or Groups
CHAPTER 10 Comparing Two Populations or Groups
CHAPTER 10 Comparing Two Populations or Groups
CHAPTER 10 Comparing Two Populations or Groups
Chapter 24 Comparing Two Means.
CHAPTER 10 Comparing Two Populations or Groups
CHAPTER 10 Comparing Two Populations or Groups
CHAPTER 10 Comparing Two Populations or Groups
Presentation transcript:

Lecture 13 – Tues, Oct 21 Comparisons Among Several Groups – Introduction (Case Study 5.1.1) Comparing Any Two of the Several Means (Chapter 5.2) The One-Way Analysis of Variance F-test (Chapter 5.3) Robustness to Assumptions (5.5.1) Thursday: Linear Combinations of Group Means (6.2), Multiple Comparisons ( )

Rules of thumb for validity of t- tools Assumptions and rules of thumb for validity of t-tools in the face of violations –Normality: Look for gross skewness. Okay if both sample sizes greater than 30. –Equal spread: Validity okay if ratio of larger sample standard deviation to smaller sample standard deviation is less than 3 and ratio of larger group size to smaller group size is less than 2. Consider transformations. Use Welch’s t-test otherwise. –Outliers: Look for outliers in box plots, especially very extreme points (more than 3 box-lengths away from box). Apply the examination strategy in Display 3.6. –Independence: If indep. not appropriate, apply matched pairs if appropriate or other tools later in course.

Comparing Several Groups Chapter 5 and 6: Compare the means of I groups (I>=2). Examples: –Compare the effect of three different teaching methods on test scores. –Compare the effect of four different therapies on how long a cancer patient lives. –Compare the effect of using different amounts of fertilizer on the yield of a crop. –Compare the amount of time that ten different tire brands last. As in Ch. 1-4, studies can either seek to compare treatments (causal inferences) or population means

Case Study Female mice randomly assigned to one of six treatment groups –NP: Mice in this group ate as much as they pleased of nonpurified, standard diet –N/N85: Fed normally both before and after weaning. After weaning, ration controlled at 85 kcal/wk –N/R50: Fed normal diet before weaning and reduced calorie diet of 50 kcal/wk after weaning –R/R50: Fed reduced calorie diet of 50 kcal/wk both before and after weaning –N/R50 lopro: Fed normal diet before weaning, a restricted diet of 50 kcal/wk after weaning and dietary protein content decreased with advancing age –N/R40: Fed normally before weaning and given severely reduced diet of 40 kcal/wk after weaning.

Questions of Interest Specific comparisons of treatments, see Display 5.3 (section 5.2) Are all of the treatments the same? (F-test, Section 5.3). Multiple comparisons (Chapter 6) Terminology for several group problem: one-way classification problem, one-way layout Setup in JMP: One column for response (e.g., lifetime), a second column for group label.

Ideal Model for Several Samples Ideal model: –The populations 1,2,…,I have normal distributions with means –Each population has the same standard deviation –Observations within each sample are independent –Observations in any one sample are independent of observations in other samples Sample sizes. Total sample size

Randomized Experiments Terminology of samples from multiple populations used but methods also apply to data from randomized experiments in which response of Y 1 on treatment 1 would produce response of on treatment 2 and on treatment 3, etc Can think of as equivalent to and as equivalent to (additive treatment effect of treatment 3 compared to treatment 2) Phrase concluding statements in terms of treatment effects or population means depending on type of study.

Comparing any two of several means Compare mean of mice on N/R50 diet to mean of N/N85 diet, (i.e., what is the additive treatment effect of N/N85 diet?) What’s different from two group problem? We have additional information about the variability in the populations from the additional group. We use this information in constructing a more accurate estimate of the population variance.

Comparing any two means Comparison of and Use usual t-test but estimate from weighted average of sample standard deviations in all groups, use df=n-I. See handout for implementation in JMP

Note about CIs and hyp. tests Suppose we form a 95% confidence interval for a parameter, e.g., The 95% confidence interval will contain 0 if and only if the p-value of the two sided test that the parameter equals 0 (e.g., vs. ) has p-value >=0.05. In other words the test will only give a “statistically significant” result if the confidence interval does not contain 0.

One-Way ANOVA F-test Basic Question: Is there any difference between any of the means? H 0 : H A : At least two of the means and are not equal Could do t-tests of all pairs of means but this has difficulties (Chapter 6 – multiple comparisons) and is not the best test. Test statistic: Analysis of Variance F-test.

ANOVA F-test in JMP Convincing evidence that the means (treatment effects) are not all the same

The rationale behind the test statistic – I If the null hypothesis is true, we would expect all the sample means to be close to one another (and as a result, close to the grand mean). If the alternative hypothesis is true, at least some of the sample means would differ. Thus, we measure variability between sample means.

The rationale behind the test statistic – II If the null hypothesis is true, we would expect all the sample means to be close to one another (and as a result, close to the grand mean). If the alternative hypothesis is true, at least some of the sample means would differ. Thus, we measure variability between sample means.

Robustness to Assumptions Robustness of t-tests and F-tests for comparing several groups are similar to robustness for two group problem. –Normality is not critical. Extremely long-tailed or skewed distributions only cause problems if sample sizes in each group are <30 –The assumption of independence within and across groups are critical. –The assumption of equal standard deviations in the population is crucial. Rule of thumb: Check if largest sample standard deviation divided by smallest sample standard deviation is <2 –Tools are not resistant to severely outlying observations. Use outlier examination strategy in Display 3.6