CS61C L6 Intro MIPS ; Load & Store (1) Garcia, Fall 2005 © UCB Hate EMACS? Love EMACS? Richard M. Stallman, a famous proponent of open- source software,

Slides:



Advertisements
Similar presentations
Lecturer PSOE Dan Garcia
Advertisements

Lecture 13: 10/8/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
4.
Instruction Set-Intro
Chapter 2.
Computer Architecture CSCE 350
CS 61C L02 Number Representation (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS 61C L07 MIPS Intro (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #6: Intro to MIPS
CS61C L05 Introduction to MIPS Assembly Language : Arithmetic (1) Garcia, Fall 2011 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 6 – Introduction to MIPS Data Transfer & Decisions I Pieter Abbeel’s recent.
COMP3221 lec08-arith.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 8: C/Assembler Data Processing
Chap.2: Instructions: Language of the computer Jen-Chang Liu, Spring 2006 Adapted from
CS 61C L06 MIPS Intro (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #6: Intro to MIPS
CS61C L08 Introduction to MIPS Assembly Language: Arithmetic (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61CL L03 MIPS I: Registers, Memory, Decisions (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures.
Cs 61C L2 Asm Ops.1 Patterson Spring 99 ©UCB CS61C C/Assembler Operators and Operands Lecture 2 January 22, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Normal C Memory Management °A program’s address space contains 4 regions: stack: local variables, grows downward heap: space requested for pointers via.
CS 61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Elec2041 lec-11-mem-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 11: Memory Access - I
Lecture 4: Loads, Logic, Loops. Review Memory is byte-addressable, but lw and sw access one word at a time. These instructions transfer the contents of.
ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 4: Arithmetic / Data Transfer Instructions Partially adapted from Computer Organization.
CIS 314: Introduction to MIPS Assembly Language: Arithmetic Fall 2005 I´ve been getting this a lot lately So, what are you teaching this term? Computer.
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L08 Introduction to MIPS Assembly Language : Arithmetic (1) Garcia, Spring 2008 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L7 MIPS: Load & Store, Decisions (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS 61C L07 MIPS Memory (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #7: MIPS Memory & Decisions.
Instruction Representation II (1) Fall 2005 Lecture 10: Instruction Representation II.
CS1104 Assembly Language: Part 1
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 07 Introduction to MIPS : Decisions II Researchers at Microsoft and UW.
CS 61C L08 Introduction to MIPS Assembly Language: Arithmetic (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L06 More Memory Management, Intro to MIPS (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
From C to Assembly Language Jen-Chang Liu, Spring 2006 Adapted from
Data Transfer & Decisions I (1) Fall 2005 Lecture 3: MIPS Assembly language Decisions I.
CS61C L09 Introduction to MIPS : Data Transfer and Decisions (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
More decisions and logic (1) Fall 2010 Lecture 4: Loads, Logic, Loops.
CS61C L14 MIPS Instruction Representation II (1) Garcia, Fall 2006 © UCB Intel: 80 cores/chip in 5 yrs!  At their developer’s forum in SF on Tuesday,
Intel has developed a new technique to generate random numbers that is suitable for integration directly into the CPU! This circuit can turn out 2.4 billion.
Topic 8: Data Transfer Instructions CSE 30: Computer Organization and Systems Programming Winter 2010 Prof. Ryan Kastner Dept. of Computer Science and.
CS 61C L2.1.2 MM and MIPS (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture Garbage Collection & Intro to MIPS Kurt Meinz.
Reformatting a Machine 125 Million Miles Away! Mars rover “Opportunity” got its flash drive reformatted 9/8/14, reason: rover keeps rebooting. Happy news:
Lecture 4: MIPS Instruction Set Reminders: –Homework #1 posted: due next Wed. –Midterm #1 scheduled Friday September 26 th, 2014 Location: TODD 430 –Midterm.
Chapter 2 Instructions: Language of the Computer Part I.
CWRU EECS 3221 Language of the Machine EECS 322 Computer Architecture Instructor: Francis G. Wolff Case Western Reserve University.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 07 Introduction to MIPS : Decisions II Guest Lecturer Alan Christopher.
CS 61C: Great Ideas in Computer Architecture Intro to Assembly Language, MIPS Intro 1 Instructors: Vladimir Stojanovic & Nicholas Weaver
Assembly Variables: Registers Unlike HLL like C or Java, assembly cannot use variables – Why not? Keep Hardware Simple Assembly Operands are registers.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
CS61C L05 Introduction to MIPS Assembly Language : Arithmetic (1) Garcia, Spring 2014 © UCB TA/Guest Lecturer: Shreyas Chand inst.eecs.berkeley.edu/~cs61c.
MIPS: Load & Store, Decisions. Memory management review Three 3’s Picking blocks off free list  best-, first-, next-fit Attempts to solve external fragmentation.
Assembly Language Basic job of a CPU: execute lots of instructions. Instructions are the primitive operations that the CPU may execute. Different CPUs.
Instructor: Dr. Mike Turi Department of Computer Science and Computer Engineering Pacific Lutheran University Lecture slides adapted from Part 4, EE 334.
Computers’ Basic Organization
IT 251 Computer Organization and Architecture
Lecturer PSOE Dan Garcia
Instruction Set Architecture
Morgan Kaufmann Publishers
Lecturer SOE Dan Garcia
IT 251 Computer Organization and Architecture
Lecturer PSOE Dan Garcia
C second, objective-c, Go up!
Hello to Jessy VanDivner listening from Ohio!
Lecturer SOE Dan Garcia
3.
COMS 361 Computer Organization
Instructions in Machine Language
COMS 361 Computer Organization
March 2006 Saeid Nooshabadi
Presentation transcript:

CS61C L6 Intro MIPS ; Load & Store (1) Garcia, Fall 2005 © UCB Hate EMACS? Love EMACS? Richard M. Stallman, a famous proponent of open- source software, the founder of the GNU Project, and the author of emacs and gcc, will be giving a speech. We're working on securing some type of food for the meeting, but we have secured a raffle prize valued at $100. The raffle will be open to all those who attend, so be sure to come and bring your friends! Brought to you by CalLUG (UC Berkeley GNU/Linux User Group). Tuesday, September 20, 6-8 PM in 100 GPB. Our website with more information can be found at

CS61C L6 Intro MIPS ; Load & Store (2) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #6 – Intro MIPS; Load & Store There is one handout today at the front and back of the room! Back in March, a laptop with the sensitive info of 98,000 students was stolen from Sproul. It was sold to a man in SF who sold it on Ebay, and was recovered in SC. Stolen laptop found!  idalert.berkeley.edu/update914.html

CS61C L6 Intro MIPS ; Load & Store (3) Garcia, Fall 2005 © UCB Review Several techniques for managing heap via malloc and free: best-, first-, next-fit 2 types of memory fragmentation: internal & external; all suffer from some kind of frag. K&R, Slab allocator, Buddy system (adaptive) Automatic memory management relieves programmer from managing memory. All require help from language and compiler Reference Count: not for circular structures Mark and Sweep: complicated and slow, works Copying: Divides memory to copy good stuff In MIPS Assembly Language: One Instruction (simple operation) per line Simpler is better, smaller is faster

CS61C L6 Intro MIPS ; Load & Store (4) Garcia, Fall 2005 © UCB Assembly Variables: Registers (1/4) Unlike HLL like C or Java, assembly cannot use variables Why not? Keep Hardware Simple Assembly Operands are registers limited number of special locations built directly into the hardware operations can only be performed on these! Benefit: Since registers are directly in hardware, they are very fast (faster than 1 billionth of a second)

CS61C L6 Intro MIPS ; Load & Store (5) Garcia, Fall 2005 © UCB Assembly Variables: Registers (2/4) Drawback: Since registers are in hardware, there are a predetermined number of them Solution: MIPS code must be very carefully put together to efficiently use registers 32 registers in MIPS Why 32? Smaller is faster Each MIPS register is 32 bits wide Groups of 32 bits called a word in MIPS

CS61C L6 Intro MIPS ; Load & Store (6) Garcia, Fall 2005 © UCB Assembly Variables: Registers (3/4) Registers are numbered from 0 to 31 Each register can be referred to by number or name Number references: $0, $1, $2, … $30, $31

CS61C L6 Intro MIPS ; Load & Store (7) Garcia, Fall 2005 © UCB Assembly Variables: Registers (4/4) By convention, each register also has a name to make it easier to code For now: $16 - $23  $s0 - $s7 (correspond to C variables) $8 - $15  $t0 - $t7 (correspond to temporary variables) Later will explain other 16 register names In general, use names to make your code more readable

CS61C L6 Intro MIPS ; Load & Store (8) Garcia, Fall 2005 © UCB C, Java variables vs. registers In C (and most High Level Languages) variables declared first and given a type Example: int fahr, celsius; char a, b, c, d, e; Each variable can ONLY represent a value of the type it was declared as (cannot mix and match int and char variables). In Assembly Language, the registers have no type; operation determines how register contents are treated

CS61C L6 Intro MIPS ; Load & Store (9) Garcia, Fall 2005 © UCB Comments in Assembly Another way to make your code more readable: comments! Hash ( # ) is used for MIPS comments anything from hash mark to end of line is a comment and will be ignored Note: Different from C. C comments have format /* comment */ so they can span many lines

CS61C L6 Intro MIPS ; Load & Store (10) Garcia, Fall 2005 © UCB Assembly Instructions In assembly language, each statement (called an Instruction), executes exactly one of a short list of simple commands Unlike in C (and most other High Level Languages), each line of assembly code contains at most 1 instruction Instructions are related to operations (=, +, -, *, /) in C or Java Ok, enough already…gimme my MIPS!

CS61C L6 Intro MIPS ; Load & Store (11) Garcia, Fall 2005 © UCB MIPS Addition and Subtraction (1/4) Syntax of Instructions: 12,3,4 where: 1) operation by name 2) operand getting result (“destination”) 3) 1st operand for operation (“source1”) 4) 2nd operand for operation (“source2”) Syntax is rigid: 1 operator, 3 operands Why? Keep Hardware simple via regularity

CS61C L6 Intro MIPS ; Load & Store (12) Garcia, Fall 2005 © UCB Addition and Subtraction of Integers (2/4) Addition in Assembly Example: add$s0,$s1,$s2 (in MIPS) Equivalent to: a = b + c (in C) where MIPS registers $s0,$s1,$s2 are associated with C variables a, b, c Subtraction in Assembly Example: sub$s3,$s4,$s5 (in MIPS) Equivalent to: d = e - f (in C) where MIPS registers $s3,$s4,$s5 are associated with C variables d, e, f

CS61C L6 Intro MIPS ; Load & Store (13) Garcia, Fall 2005 © UCB Addition and Subtraction of Integers (3/4) How do the following C statement? a = b + c + d - e; Break into multiple instructions add $t0, $s1, $s2 # temp = b + c add $t0, $t0, $s3 # temp = temp + d sub $s0, $t0, $s4 # a = temp - e Notice: A single line of C may break up into several lines of MIPS. Notice: Everything after the hash mark on each line is ignored (comments)

CS61C L6 Intro MIPS ; Load & Store (14) Garcia, Fall 2005 © UCB Addition and Subtraction of Integers (4/4) How do we do this? f = (g + h) - (i + j); Use intermediate temporary register add $t0,$s1,$s2# temp = g + h add $t1,$s3,$s4# temp = i + j sub $s0,$t0,$t1# f=(g+h)-(i+j)

CS61C L6 Intro MIPS ; Load & Store (15) Garcia, Fall 2005 © UCB Register Zero One particular immediate, the number zero (0), appears very often in code. So we define register zero ($0 or $zero ) to always have the value 0; eg add $s0,$s1,$zero (in MIPS) f = g (in C) where MIPS registers $s0,$s1 are associated with C variables f, g defined in hardware, so an instruction add $zero,$zero,$s0 will not do anything!

CS61C L6 Intro MIPS ; Load & Store (16) Garcia, Fall 2005 © UCB Immediates Immediates are numerical constants. They appear often in code, so there are special instructions for them. Add Immediate: addi $s0,$s1,10 (in MIPS) f = g + 10 (in C) where MIPS registers $s0,$s1 are associated with C variables f, g Syntax similar to add instruction, except that last argument is a number instead of a register.

CS61C L6 Intro MIPS ; Load & Store (17) Garcia, Fall 2005 © UCB Immediates There is no Subtract Immediate in MIPS: Why? Limit types of operations that can be done to absolute minimum if an operation can be decomposed into a simpler operation, don’t include it addi …, -X = subi …, X => so no subi addi $s0,$s1,-10 (in MIPS) f = g - 10 (in C) where MIPS registers $s0,$s1 are associated with C variables f, g

CS61C L6 Intro MIPS ; Load & Store (18) Garcia, Fall 2005 © UCB Peer Instruction A. Types are associated with declaration in C (normally), but are associated with instruction (operator) in MIPS. B. Since there are only 8 local ( $s ) and 8 temp ( $t ) variables, we can’t write MIPS for C exprs that contain > 16 vars. C. If p (stored in $s0 ) were a pointer to an array of int s, then p++; would be addi $s0 $s0 1 ABC 1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFT 7: TTF 8: TTT

CS61C L6 Intro MIPS ; Load & Store (19) Garcia, Fall 2005 © UCB Administrivia Project 1 dealine extended until Monday! The Autograder is up! gcc -o foo foo.c We shouldn’t see any a.out files anymore now that you’ve learned this! You should be able to finish labs within the allotted time. If you can’t, get checked off for what you have, home, check off next week If this becomes a pattern, think about working on home HW2 frozen! (1 week regrades start now)

CS61C L6 Intro MIPS ; Load & Store (20) Garcia, Fall 2005 © UCB Assembly Operands: Memory C variables map onto registers; what about large data structures like arrays? 1 of 5 components of a computer: memory contains such data structures But MIPS arithmetic instructions only operate on registers, never directly on memory. Data transfer instructions transfer data between registers and memory: Memory to register Register to memory

CS61C L6 Intro MIPS ; Load & Store (21) Garcia, Fall 2005 © UCB Anatomy: 5 components of any Computer Personal Computer Processor Computer Control (“brain”) Datapath Registers MemoryDevices Input Output Load (from) Store (to) These are “data transfer” instructions… Registers are in the datapath of the processor; if operands are in memory, we must transfer them to the processor to operate on them, and then transfer back to memory when done.

CS61C L6 Intro MIPS ; Load & Store (22) Garcia, Fall 2005 © UCB Data Transfer: Memory to Reg (1/4) To transfer a word of data, we need to specify two things: Register: specify this by # ($0 - $31) or symbolic name ($s0,…, $t0, …) Memory address: more difficult -Think of memory as a single one- dimensional array, so we can address it simply by supplying a pointer to a memory address. -Other times, we want to be able to offset from this pointer. Remember: “Load FROM memory”

CS61C L6 Intro MIPS ; Load & Store (23) Garcia, Fall 2005 © UCB Data Transfer: Memory to Reg (2/4) To specify a memory address to copy from, specify two things: A register containing a pointer to memory A numerical offset (in bytes) The desired memory address is the sum of these two values. Example: 8($t0) specifies the memory address pointed to by the value in $t0, plus 8 bytes

CS61C L6 Intro MIPS ; Load & Store (24) Garcia, Fall 2005 © UCB Data Transfer: Memory to Reg (3/4) Load Instruction Syntax: 1 2,3(4) where 1) operation name 2) register that will receive value 3) numerical offset in bytes 4) register containing pointer to memory MIPS Instruction Name: lw (meaning Load Word, so 32 bits or one word are loaded at a time)

CS61C L6 Intro MIPS ; Load & Store (25) Garcia, Fall 2005 © UCB Data Transfer: Memory to Reg (4/4) Example: lw $t0,12($s0) This instruction will take the pointer in $s0, add 12 bytes to it, and then load the value from the memory pointed to by this calculated sum into register $t0 Notes: $s0 is called the base register 12 is called the offset offset is generally used in accessing elements of array or structure: base reg points to beginning of array or structure Data flow

CS61C L6 Intro MIPS ; Load & Store (26) Garcia, Fall 2005 © UCB Data Transfer: Reg to Memory Also want to store from register into memory Store instruction syntax is identical to Load’s MIPS Instruction Name: sw (meaning Store Word, so 32 bits or one word are loaded at a time) Example: sw $t0,12($s0) This instruction will take the pointer in $s0, add 12 bytes to it, and then store the value from register $t0 into that memory address Remember: “Store INTO memory” Data flow

CS61C L6 Intro MIPS ; Load & Store (27) Garcia, Fall 2005 © UCB Pointers v. Values Key Concept: A register can hold any 32-bit value. That value can be a (signed) int, an unsigned int, a pointer (memory address), and so on If you write add$t2,$t1,$t0 then $t0 and $t1 better contain values If you write lw $t2,0($t0) then $t0 better contain a pointer Don’t mix these up!

CS61C L6 Intro MIPS ; Load & Store (28) Garcia, Fall 2005 © UCB Addressing: Byte vs. word Every word in memory has an address, similar to an index in an array Early computers numbered words like C numbers elements of an array: Memory[0], Memory[1], Memory[2], … Called the “address” of a word Computers needed to access 8-bit bytes as well as words (4 bytes/word) Today machines address memory as bytes, (i.e.,“Byte Addressed”) hence 32- bit (4 byte) word addresses differ by 4 Memory[0], Memory[4], Memory[8], …

CS61C L6 Intro MIPS ; Load & Store (29) Garcia, Fall 2005 © UCB Compilation with Memory What offset in lw to select A[5] in C? 4x5=20 to select A[5] : byte v. word Compile by hand using registers: g = h + A[5]; g : $s1, h : $s2, $s3 :base address of A 1st transfer from memory to register: lw$t0,20($s3) # $t0 gets A[5] Add 20 to $s3 to select A[5], put into $t0 Next add it to h and place in g add $s1,$s2,$t0 # $s1 = h+A[5]

CS61C L6 Intro MIPS ; Load & Store (30) Garcia, Fall 2005 © UCB Notes about Memory Pitfall: Forgetting that sequential word addresses in machines with byte addressing do not differ by 1. Many an assembly language programmer has toiled over errors made by assuming that the address of the next word can be found by incrementing the address in a register by 1 instead of by the word size in bytes. So remember that for both lw and sw, the sum of the base address and the offset must be a multiple of 4 (to be word aligned)

CS61C L6 Intro MIPS ; Load & Store (31) Garcia, Fall 2005 © UCB More Notes about Memory: Alignment Aligned Not Aligned MIPS requires that all words start at byte addresses that are multiples of 4 bytes Called Alignment: objects must fall on address that is multiple of their size. 0, 4, 8, or C hex Last hex digit of address is: 1, 5, 9, or D hex 2, 6, A, or E hex 3, 7, B, or F hex

CS61C L6 Intro MIPS ; Load & Store (32) Garcia, Fall 2005 © UCB Role of Registers vs. Memory What if more variables than registers? Compiler tries to keep most frequently used variable in registers Less common in memory: spilling Why not keep all variables in memory? Smaller is faster: registers are faster than memory Registers more versatile: -MIPS arithmetic instructions can read 2, operate on them, and write 1 per instruction -MIPS data transfer only read or write 1 operand per instruction, and no operation

CS61C L6 Intro MIPS ; Load & Store (33) Garcia, Fall 2005 © UCB Loading, Storing bytes 1/2 In addition to word data transfers ( lw, sw ), MIPS has byte data transfers: load byte: lb store byte: sb same format as lw, sw

CS61C L6 Intro MIPS ; Load & Store (34) Garcia, Fall 2005 © UCB x Loading, Storing bytes 2/2 What do with other 24 bits in the 32 bit register? lb : sign extends to fill upper 24 bits byte loaded …is copied to “sign-extend” This bit xxxx xxxx xxxx zzz zzzz Normally don't want to sign extend chars MIPS instruction that doesn’t sign extend when loading bytes: load byte unsigned: lbu

CS61C L6 Intro MIPS ; Load & Store (35) Garcia, Fall 2005 © UCB “And in conclusion…” In MIPS Assembly Language: Registers replace C variables One Instruction (simple operation) per line Simpler is better, smaller is faster Memory is byte-addressable, but lw and sw access one word at a time. One can store & load (signed and unsigned) bytes too A pointer (used by lw & sw ) is just a mem address, so we can add to it or subtract from it (via offset). New Instructions: add, addi, sub, lw, sw, lb, sb, lbu New Registers: C Variables: $s0 - $s7 Temporary Variables: $t0 - $t9 Zero: $zero