CHAPTER-13 Gravitation.

Slides:



Advertisements
Similar presentations
UNIT 6 (end of mechanics) Universal Gravitation & SHM
Advertisements

UNIT 6 (end of mechanics) Universal Gravitation & SHM.
Chapter 13 Gravitation PhysicsI 2048.
14 The Law of Gravity.
Review Chap. 12 Gravitation
The Beginning of Modern Astronomy
Chapter 8 Gravity.
Gravitation Newton’s Law of Gravitation Superposition Gravitation Near the Surface of Earth Gravitation Inside the Earth Gravitational Potential Energy.
Chapter 7 Rotational Motion and The Law of Gravity.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Ch12-1 Newton’s Law of Universal Gravitation Chapter 12: Gravity F g = Gm 1 m 2 /r 2 G = 6.67 x Nm 2 /kg 2.
Semester Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 560, A29
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 6, 2006.
Physics 151: Lecture 28 Today’s Agenda
Chapter 13: Gravitation. Newton’s Law of Gravitation A uniform spherical shell shell of matter attracts a particles that is outside the shell as if all.
Chapter Seven Rotational Motion.
Physics 111: Elementary Mechanics – Lecture 12 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Jw Fundamentals of Physics 1 GRAVITY. jw Fundamentals of Physics 2 Chapter 13: Newton, Einstein, and Gravity Isaac Newton Albert Einstein 1872.
Physics 111: Mechanics Lecture 13 Dale Gary NJIT Physics Department.
Chapter 13 Gravitation.
Chapter 13 Gravitation.
Circular Motion and Gravitation
Rotational Motion and The Law of Gravity
Newton and Kepler. Newton’s Law of Gravitation The Law of Gravity Isaac Newton deduced that two particles of masses m 1 and m 2, separated by a distance.
Physics 111: Mechanics Lecture 13
Universal Gravitation
Physics 2113 Lecture 03: WED 17 JAN CH13: Gravitation III Physics 2113 Jonathan Dowling Michael Faraday (1791–1867) Version: 9/18/2015 Isaac Newton (1642–1727)
Physics 201: Lecture 24, Pg 1 Chapter 13 The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under.
 Galileo was the first who recognize the fact that all bodies, irrespective of their masses, fall towards the earth with a constant acceleration.  The.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy.
Universal Gravitation
Physics 221 Chapter 13 Is there gravity on Mars? Newton's Law of Universal Gravitation F = GmM/r 2 Compare with F = mg so g = GM/r 2 g depends inversely.
Chapter 13 Gravitation. Newton’s law of gravitation Any two (or more) massive bodies attract each other Gravitational force (Newton's law of gravitation)
Simple pendulum It consist of a small object suspended from the end of a light weight cord. The motion of a simple pendulum swinging back and forth with.
Monday, Oct. 4, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Law of Universal Gravitation 2.Kepler’s Laws 3.Motion in Accelerated Frames PHYS.
Gravitation. Gravitational Force and Field Newton proposed that a force of attraction exists between any two masses. This force law applies to point masses.
Chapter 12 Universal Law of Gravity
Copyright © 2012 Pearson Education Inc. Orbital motion, final review Physics 7C lecture 18 Thursday December 5, 8:00 AM – 9:20 AM Engineering Hall 1200.
Gravitational Field Historical facts Geocentric Theory Heliocentric Theory – Nicholas Copernicus (1473 – 1543) Nicholas Copernicus – All planets, including.
CHAPTER 14 : THE LAW OF GRAVITY 14.1) Newton’s Law of Universal Gravitation Newton’s law of universal gravitation = every particle in the Universe attracts.
Physics.
Example How far from the earth's surface must an astronaut in space be if she is to feel a gravitational acceleration that is half what she would feel.
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
Chapter 7 Rotational Motion and The Law of Gravity.
Physics 231 Topic 9: Gravitation Alex Brown October 30, 2015.
Gravitation. Gravitational Force the mutual force of attraction between particles of matter Newton’s Law of Universal Gravitation F g =G(m 1* m 2 /r 2.
Chapter 6 - Gravitation Newton’s Law of Gravitation (1687)
Chapter 13 Gravitation Newton’s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the.
Chapter 13 Gravitation.
Spring 2002 Lecture #21 Dr. Jaehoon Yu 1.Kepler’s Laws 2.The Law of Gravity & The Motion of Planets 3.The Gravitational Field 4.Gravitational.
Chapters 7 & 8 The Law of Gravity and Rotational Motion.
Circular Motion: Gravitation Chapter Kinematics of Uniform Circular Motion  Uniform circular motion is when an object moves in a circle at constant.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth.
Physics 1501: Lecture 16, Pg 1 Physics 1501: Lecture 16 Today’s Agenda l Announcements çHW#6: Due Friday October 14 çIncludes 3 problems from Chap.8 l.
T072: Q19: A spaceship is going from the Earth (mass = M e ) to the Moon (mass = M m ) along the line joining their centers. At what distance from the.
Chapter 7 Rotational Motion and The Law of Gravity.
Chapter 13 Gravitation & 13.3 Newton and the Law of Universal Gravitation Newton was an English Scientist He wanted to explain why Kepler’s Laws.
Newton Anything with mass attracts anything else with mass. The size of that attraction is given by my Law of Gravitation: Fg = Gm 1 m 2 r 2.
Chapter 13 Gravitation In this chapter we will explore the following topics: -Newton’s law of gravitation, which describes the attractive force between.
Chapter 13 Gravitation.
More Gravitation.
4.2 Fields Gravitation Breithaupt pages 54 to 67 September 20th, 2010.
In this chapter we will explore the following topics:
C - More Gravitation.
Chapter 13 Gravitation.
Universal Gravitation
Chapter 13 Gravitation.
Mechanics Gravitations MARLON FLORES SACEDON.
PHYS 1443 – Section 001 Lecture #8
Presentation transcript:

CHAPTER-13 Gravitation

Ch 13-2 Newton’s Law of Gravitation Newton's Law of Gravitation- a key in understanding gravitational force holding Earth, moon, Sun and other galactic bodies together Magnitude of gravitational force F between two mases m1 and m2 separated by a distance r: F=G(m1m2/r2) Gravitational constant G= 6.67x10-11 m3/kg.s

Ch 13-2 Newton’s Law of Gravitation Shell theorem: A uniform spherical shell attracts a particle outside the shell as if all the shell mass was concentrated at the shell center For any particle located inside the shell, the net gravitational force between the particle and shell is zero

Ch 13 Checkpoint 1 A particle is to be placed , in turn, outside four objects, each of mass m: (1) large uniform solid sphere, (2) large uniform spherical shell, (3) a small uniform solid sphere, (4) a small uniform shell. In each situation, the distance between the particle and the center of the object is d. Rank the objects according to the magnitude of the gravitational force they exert on the particles, greatest first all tie

Ch 13 Checkpoint 2 The figure shows four arrangements of three particles of equal masses. (a) Rank the arrangements according to the magnitude of the net gravitational force on the particle labeled m, greatest first. (b) In arrangement 2, is the direction of the net force closer to the line of length d or to the length D. (1) Fnet=Gm2(1/d2+1/D2)i (2) Fnet=Gm2[(1/d2 )i+(1/D2) j] (3) Fnet=Gm2[-(1/d2 )+(1/D2)]i (4) Fnet=Gm2[-(1/d2 )j+(1/D2)i] (a) 1, tie of 2 and 4, then 3; (b) line d

Ch 13 Checkpoint 3 In the figure her, what is the direction of the net gravitational force on the particle of mass m1 due to other particles, each of mass m and arranged symmetrically relative to the y axis? Net force downward along y-axis with all x-components cancelled out

Ch 13-4 Gravitation near Earth Surface Principal of superposition of Gravitational force For n interacting particles, the net gravitational force on particle 1 due to other is F1,net=i=2F1i Gravitation near Earth Surface: Force of attraction between the Earth and a particle of mass m located outside Earth at a distance of r from Earth’s center; F=GmME/r2 but F=mag where ag is gravitational acceleration given by: ag= GME/r2

Ch 13-4 Gravitation Near Earth Acceleration of gravity g differs from g because: Earths mass is not uniformly distributed Earth is not a sphere Earth is rotating Analyze forces on a crate with mass m located at the equator FN-mag=-FR=-mv2/R=-mR2 But FN=mg then mg = mag-mR2 g = ag-R2

Ch 13-5 Gravitation Inside Earth For any particle located inside uniform shell of matter , the net gravitational force between the particle and shell is zero

Ch 13-6 Gravitational Potential Energy Gravitational Potential Energy of two-particles system: Work done on the ball when the ball move from point P to a point at infinity from earth center W= F(r).dr= F(r)dr cos For =180 and F(r)=GMm/r2 W= R -F(r).dr=R-(GMm/r2)dr =-GMmR(dr/r2)= GMm[1/r]R W=0-GMm/r=-GMm/r

Ch 13-6 Escape Speed Potential Energy and Force: Force F(r)=-dU/dr=-d/dr(GMm/r)=-GMm/r2 Negative sign indicates direction of force opposite to that increasing r Earth Escape Speed Minimum initial speed required at Earth surface to send an object to infinity with zero kinetic energy (velocity) and zero potential energy. Then Ki+Ui=mvesc2/2-GMm/R=0 vesc=2GM/R

Ch 13 Checkpoint 4 U= -(GmM)/r You move a ball of mass m away from a sphere of mass M. (a) Does the gravitational potential energy of the ball-sphere system increase or decrease? (b) Is positive or negative work done by the gravitational force between the ball and the sphere? U= -(GmM)/r [ U=0 for r= and U becomes more negative as particles move closer]. U becomes less negative and it increases (b) Wg=-Wa negative

Ch 13-7 Planets and Satellites: Kepler’s Laws Kepler’s Law of Planetory Motion: Three laws namely Law of Orbits, Law of Areas and Law of Periods Law of Orbits: All planets move in elliptical orbits , with the sun at one focus. Semi major axis a, semi minor axis b; eccentricity e, ea distance of one of the focal point from the center of the ellipse For a circle eccentricity e is zero

Ch 13-7 Planets and Satellites: Kepler’s Law- Law of Areas A line that connects a planet to the sun sweeps out equal areas in the plane of the planet’s orbit in equal time intervals; that is the rate dA/dt at which it sweeps out area A is constant Area A of the wedge is the area of the triangle i.e. A=(r2)/2; dA/dt = r2(d/dt)/2= r2/2 But angular momentum L=mr2 Then dA/dt= r2/2=L/2m

Ch 13 Checkpoint 5 Satellite 1 is in a certain circular orbit around a planet, while satellite 2 is in a large circular orbit. Which satellite has (a) the longer period and (b) the greater speed T2=(42/GM)R3 Since R1<R2 then T1<T2 Longer period for satellite 2; (b) K=mv2/2=GmM/2R v2=GM/R Greater v for smaller R i.e R1 the greater speed for satellite 1

Ch 13-7 Planets and Satellites: Kepler’s Law- Law of Periods The square of period of any planet is proportional to the cube of the semi major axis of the orbit Considering the circular orbit with radius R (the radius of a circle is equivalent to the semi major axis of an ellipse) Newton’s law applied to an orbiting planet gives GmM/R2=mv2/R=m2/R GM/R3= 2=(2/T)2 R3/GM=T2 /42 T2 =(42/GM) R3

Ch 13-8 Satellites Orbits and Energy For an orbiting satellite, speed fixes its kinetic energy K and its distance from earth fixes its potential energy U. Then mechanical energy E (E = K+U) of the Earth-satellite system remains constant. K=mv2/2 but mv2/R=GmM/R2 Then K=mv2/2=GmM/2R U=-GmM/R = -2K ; we have K=- U/2 and E=K+U= K+(-2K)=-K(circular orbit) For an elliptical orbit R=a Then E=-K=-GmM/2a For same value of a, E is constant