LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 1 Linac Coherent Light Source.

Slides:



Advertisements
Similar presentations
Lecture 4. High-gain FELs X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich May 2014.
Advertisements

Lecture 3. Low-gain and high-gain FELs X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich May.
X-ray Free Electron lasers Zhirong Huang. Lecture Outline XFEL basics XFEL basics XFEL projects and R&D areas XFEL projects and R&D areas Questions and.
Paul Emma SLAC January 14, 2002 BERLIN CSR Benchmark Test-Case Results CSR Workshop.
The echo-enabled harmonic generation (EEHG) options for FLASH II Haixiao Deng, Winfried Decking, Bart Faatz FEL division, Shanghai Institute of Applied.
Workshop Issues Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Diagnostics.
Approaches for the generation of femtosecond x-ray pulses Zhirong Huang (SLAC)
Beam-Based Alignment with New Parameters Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Workshop Introduction Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Diagnostics.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
P. Emma FAC Meeting 7 Apr Low-Charge LCLS Operating Point Including FEL Simulations P. Emma 1, W. Fawley 2, Z. Huang 1, C.
RF Waveguide & Structures Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Undulator Physics April 29, 2004 Heinz-Dieter Nuhn, SLAC / SSRL Facility Advisory Committee Meeting Undulator Physics Diagnostics.
Performance Analysis Using Genesis 1.3 Sven Reiche LCLS Undulator Parameter Workshop Argonne National Laboratory 10/24/03.
James Welch October 30, FEL Commissioning Plans J. Welch, et. al. FEL Commissioning Plans J. Welch, et. al. Accelerator.
Juhao Wu Feedback & Oct. 12 – 13, 2004 Juhao Wu Stanford Linear Accelerator Center LCLS Longitudinal Feedback with CSR as Diagnostic.
1 Daniel Ratner 1 Gain Length and Taper August, 2009 FEL Gain length and Taper Measurements at LCLS D. Ratner A. Brachmann, F.J.
LTU & Electron Beam Dump Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Technical Design.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Undulator Commissioning September 22, 2004 Heinz-Dieter Nuhn, SLAC / SSRL LCLS Commissioning Workshop Undulator / FEL Commissioning.
Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Z. Huang LCLS FAC April Effect of AC RW Wake on SASE - Analytical Treatment Z. Huang, G. Stupakov see SLAC-PUB-10863, to.
John N. Galayda LCLS Commissioning 22 September 2004 Welcome/Charge Welcome to the Workshop LCLS Status Since the January.
Undulator Overview FEL Performance Assessment
PRDs, ESDs, ICDs Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
LCLS Linac Long Lead Procurement Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Undulator Alignment.
BBA Related Issues Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Comments from LCLS FAC Meeting (April 2004): J. Rößbach:“How do you detect weak FEL power when the gain is very low (few hundred)?” K. Robinson:“Can you.
Opening Comments and Charge 19 January 2004 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear.
Overview of Proposed Parameter Changes Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center 1 LCLS Linac TDR, December.
Wrap-up 20 January 2004 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
Component Specification Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
RF Systems and Stability Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Undulator Specifications Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Richard M. Bionta XTOD Beam and Detector October 12-13, 2004 UCRL-PRES-XXXXX XTOD Beam and Detector Simulations Facility Advisory.
R. M. Bionta SLAC November 14, 2005 UCRL-PRES-XXXXXX LCLS Beam-Based Undulator K Measurements Workshop Use of FEL Off-Axis Zone Plate.
EM vs. PM Quads Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
Bright Lights on the Horizon Future Perspectives for Nuclear Resonant Scattering of Synchrotron Radiation Ralf Röhlsberger DESY, Hamburg, Germany.
Longitudinal Space Charge in LCLS S2E Z. Huang, M. Borland, P. Emma, J.H. Wu SLAC and Argonne Berlin S2E Workshop 8/21/2003.
R&D Towards X-ray Free Electron Laser Li Hua Yu Brookhaven National Laboratory 1/23/2004.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Synchrotron radiation at eRHIC Yichao Jing, Oleg Chubar, Vladimir N. Litvinenko.
Transverse Profiling of an Intense FEL X-Ray Beam Using a Probe Electron Beam Patrick Krejcik SLAC National Accelerator Laboratory.
The Future of Photon Science and Free-Electron Lasers Ingolf Lindau Lund University and Stanford University MAX-Lab and Synchrotron Light Research KTH,
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Beam Modulation due to Longitudinal Space Charge Zhirong Huang, SLAC Berlin S2E Workshop 8/18/2003.
J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
Intra-beam Scattering in the LCLS Linac Zhirong Huang, SLAC Berlin S2E Workshop 8/21/2003.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Applications of transverse deflecting cavities in x-ray free-electron lasers Yuantao Ding SLAC National Accelerator Laboratory7/18/2012.
Free Electron Laser Studies
Sven Reiche UCLA ICFA-Workshop - Sardinia 07/02
CSR Microbunching in the Zeuthen-Workshop Benchmark Chicane
Time-Resolved Images of Coherent Synchrotron Radiation Effects
TW FEL “Death-Ray“ Studies
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
Gain Computation Sven Reiche, UCLA April 24, 2002
Transverse size and distribution of FEL x-ray radiation of the LCLS
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Undulator Physics Diagnostics / Commissioning Strategy Heinz-Dieter Nuhn, SLAC / SSRL August 11, 2004 Undulator Overview FEL Parameters Diagnostics and.
Introduction to Free Electron Lasers Zhirong Huang
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Presentation transcript:

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 1 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Measuring the FEL gain with trajectory distortion Z. Huang, SLAC January 20, 2004

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 2 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Introduction  Stop the FEL amplification in the undulator and measure the radiation properties at the end (TTF results, PRL, 2001)

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 3 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Single Kick Error (SKE)  Two effects of SKE (Tanaka et al., FEL2003): reduction in coupling smearing of microbunching  Critical angle to destroy FEL interaction

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 4 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Trajectory distortion in LCLS  Offset the quad by Q x amount. If the focal length of the quad is F, then the kick angle is  Q = -Q x /F  Set  Q =  c, since F ≈ 10m, Q x ≈ 60  m, so that the maximum betatron amplitude  x  Q ≈ 2Q x

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 5 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center GENESIS simulation results  Total power still grows due to interaction with higher-order modes & spontaneous radiation (div. angle up to 100  rad)  On-axis power is dominated by the FEL fundamental mode only (~1  rad) and stops growing when Q x ~60  m.

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 6 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Z-dependence  Initial stage: no microbunching to destroy, still some weak interaction + a lot of spontaneous  Exponential growth region, works reasonably well Qx = 60  m Vary Qx

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 7 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Summary  It worked (as in TTF,…)  Trajectory distortion can stop further growth of FEL fundamental mode, but other higher-order modes (including spontaneous) increase the background  Collimation helps to pick up on-axis signal, or can we find the hot spot by data analysis?  Measurement results should be cross-checked with other methods, if possible

LCLS undulator diagnostics and commissioning workshop January 19-20, 2004 (UCLA) Zhirong Huang, SLAC 8 Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center  Spontaneous fundamental radiation within 3% bandwidth reaches 60 MW, FEL signal can dominate after 40m Spontaneous v.s. FEL gain Spontaneous fundamental in 3% BW (Z. Huang, K.-J. Kim FEL2002)