3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry Opportunities for Dust Polarization Surveys C. Darren Dowell (Caltech) 1/30.

Slides:



Advertisements
Similar presentations
Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
Advertisements

Herschel study of the dust content of Cassiopeia A Ref: arxiv: v1 Oliver Krause PPT.
The Green Bank Telescope a powerful instrument for enhancing ALMA science Unblocked Aperture Low sidelobes gives high dynamic range Resistance to Interference.
Multiwavelength Sky by NASA. Radio Continuum (408 MHz). Intensity of radio continuum emission from surveys with ground- based radio telescopes (Jodrell.
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
Polarization 101 Absorption Emission Scattering. PolarizationPolarization of Background Starlight.
Star & Planet Formation Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics.
Polarized Thermal Emission from Interstellar Dust John Vaillancourt Roger Hildebrand, Larry Kirby (U. Chicago) Giles Novak, Megan Krejny, Hua-bai Li (Northwestern)
Magnetic Fields in Star Formation Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics Tyler Bourke Smithsonian Astrophysical Observatory/SMA.
The Mass of the Galaxy We can use the orbital velocity to deduce the mass of the Galaxy (interior to our orbit): v orb 2 =GM/R. This comes out about 10.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Is SOFIA the large or the small scale? ALMA: resolution up to 0.02  / (mm), shortest  330  m Connecting Large and Small Scale Magnetic Fields.
Comparison of Photometric And Spectroscopic Redshifts.
7/2/2015Richter - UC Davis1 EXES, the echelon-cross-echelle spectrograph for SOFIA Matthew J. Richter (UC Davis) with Mark McKelvey (NASA Ames Research.
21 October Introduction to M4 Science Observe 95  m Polarized Radiation l Map the “Magnetic Field of the Milky Way” (Central 100 degrees in l and.
University of Chicago 2007 July 30 SOFIA-POL 2007 The Infrared - Millimeter Polarization Spectrum John Vaillancourt California Institute of Technology.
SCUBA Polarization results: Jane Greaves, Joint Astronomy Centre, Hawaii with special thanks to: Wayne Holland, Tim Jenness, David Berry and.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The Universe in the Infrared What is the Spitzer Space Telescope, and how does it work? Funded by NASA’s Spitzer Science Center Images courtesy NASA/JPL.
Infrared Telescopes 1.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Stratospheric Terahertz Observatory (STO)‏ 0.8-meter telescope, 1' um Heterodyne receiver arrays for wide-field [N II] and [C II] spectroscopy,
Space Infrared Astronomy in Japan 2009 UN BSS & IHY Workshop, September 22, 2009 MATSUMOTO, Toshio Seoul National University, ISAS/JAXA.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
Cosmic magnetism ( KSP of the SKA) understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Magnetic Fields Near the Young Stellar Object IRAS M. J Claussen (NRAO), A. P. Sarma (E. Kentucky Univ), H.A. Wootten (NRAO), K. B. Marvel (AAS),
ATLASGAL ATLASGAL APEX Telescope Large Area Survey of the Galaxy F. Schuller, K. Menten, P. Schilke, et al. Max Planck Institut für Radioastronomie.
VLASS – Galactic Science Life cycle of star formation in our Galaxy as a proxy for understanding the Local Universe legacy science Infrared GLIMPSE survey.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
Chapter 15: Star Formation and the Interstellar Medium.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
The Galactic Plane Infrared Polarization Survey (GPIPS) Current Members: Michael Pavel Dan Clemens (PI) Lauren Cashman Sadia Hoq Jordan Montgomory Ian.
Magnetic fields in the Galaxy via Faraday effect: Future prospects with ASKAP and the SKA Lisa Harvey-Smith Collaborators: Bryan CSIRO SKA Project ScientistGaensler.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois Collaborators:Tom Troland, University of Kentucky Edith Falgarone, Ecole.
The JCMT in the ALMA Era Surveying the Sub-millimetre Sky (Canada / Netherlands / Great Britain) Doug Johnstone NRC/HIA.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Studying Young Stellar Objects with the EVLA
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Shih-Ping Lai 賴詩萍 (National Tsing-Hua University, Taiwan) 清華大學, 台灣.
The Far-Infrared Universe: from the Universe’s oldest light to the birth of its youngest stars Jeremy P. Scott, on behalf of Locke D. Spencer Physics and.
Structure Formation in the Universe Concentrate on: the origin of structure in the Universe How do we make progress?How do we make progress? What are the.
Star Formation Why is the sunset red? The stuff between the stars
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
Thessaloniki, Oct 3rd 2009 Cool dusty galaxies: the impact of the Herschel mission Michael Rowan-Robinson Imperial College London.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
SOFIA Polarimetry Pow-Wow (Darren’s slides)
IR Astronomy In Search of Grain Alignment Pierre Bastien Megan Krejny Kathleen DeWahl Terry Jay Jones University of Minnesota.
FIRST LIGHT A selection of future facilities relevant to the formation and evolution of galaxies Wavelength Sensitivity Spatial resolution.
150GHz 100GHz 220GHz Galactic Latitude (Deg) A Millimeter Wave Galactic Plane Survey with the BICEP Polarimeter Evan Bierman (U.C. San Diego) and C. Darren.
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
SOFIA and the ISM of Galaxies Xander Tielens & Jessie Dotson Presented by Eric Becklin.
Characterizing Magnetized Turbulence through Magnetic Field Dispersion Martin Houde The University of Western Ontario CC2YSO - 19 May 2010.
The Turbulent Interstellar Medium Far-IR Spectropolarimetry and CMB Foregrounds A CALISTO polarimeter will provide the unique opportunity to study the.
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
Cosmic Background Explorer: COBE
Star Formation The stuff between the stars Nebulae Giant molecular clouds Collapse of clouds Protostars Reading
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Polarized Light from Star-Forming Regions
1 ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) Netherlands Institute for Radio Astronomy Astronomy at ASTRON George Heald.
Observability of YSOs with the WISE and AKARI infrared observatories Sarolta Zahorecz Eötvös University, Budapest PhD student, 3. year Thesis advisor:
Hale, a Multi-Wavelength, Far-Infrared Polarimeter for SOFIA
Dust Polarization in Galactic Clouds with PICO
Presentation transcript:

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry Opportunities for Dust Polarization Surveys C. Darren Dowell (Caltech) 1/30

Outline magnetic fields in interstellar clouds observational and theoretical approaches dust composition, shape, and alignment sensitivity comparison survey approaches 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry2/30

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry3/30 Magnetic Field Strengths in Interstellar Clouds

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry4/30 Galactic Field in A V ≈ 1 Medium optical polarimetry

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry5/30 Galactic Field in A V ≈ 10 Medium BICEP: southern sky at = 2 mm, 1º resolution

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry6/30 Galactic Field in A V ≈ 100 Medium FIR-bright cloud cores: no B angle correlation with Gal. plane data from Dotson et al. (2000, 2008)

Measuring Magnetic Fields In addition to the usual problems with line-of-sight averaging and unresolved structure: vector B = (B x, B y, B los ) –B los : Zeeman, Faraday rotation –tan -1 (B y /B x ): synchrotron, dust polarization 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry7/30

Measuring Magnetic Fields In addition to the usual problems with line-of-sight averaging and unresolved structure: vector B = (B x, B y, B los ) –B los : Zeeman, Faraday rotation –tan -1 (B y /B x ): synchrotron, dust polarization –√(B x 2 +B y 2 ): dust polarization via Chandrasekhar-Fermi approach? 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry8/30

WMAP all-sky synchrotron map 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry9/30

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry10/30 Berkhuijsen (1997)

complementarity of synchrotron and dust mapping 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry11/30 Blue: Spitzer 8  m red: Bolocam/CSO 1.1 mm purple: VLA 20 cm Bally et al. (2009)

complementarity of synchrotron and dust polarization 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry12/30 Chuss et al. (2003)  m

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry13/30 Far-IR polarimetry is an excellent tracer of magnetic fields at densities up to 10 6 cm -3. Schleuning (1998) Rao et al. (1998)Ward-Thompson et al. (2000) Orion Core L183 Dark Cloud B vec

Tests of Cloud and Core Formation Theory with FIR Polarimetry Ordered structures –flow along field lines –tidal shear –swept-up shells –accretion disks Large features resulting from instabilities Dispersion in field –Chandrasekhar-Fermi approach 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry14/30

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry15/30 Far-IR polarimetry tests geometrical models of magnetic fields: protostars “hourglass” field in protostellar envelope NGC 1333 IRAS 4A observation w/ interferometer: Girart, Rao, & Marrone (2000) model: Fiedler & Mouschovias 1993 B vec

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry16/30 Far-IR polarimetry tests geometrical models of magnetic fields: cloud cores Kirby (2008) Schleuning (1998); Houde et al. (2004)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry17/30 Kim & Ostriker (2006) swing amplifier effect magneto-Jeans instability Kim & Ostriker (2001) Far-IR polarimetry tests geometrical models of magnetic fields: cloud formation

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry18/30 Magnetic Field Strength from Chandrasekhar-Fermi Method B = x  1/2  v /  x: Ostriker et al.(2001); Padoan et al. (2001); Heitsch et al. (2001); Falceta-Goncalves et al. (2008) strong field: small dispersionweak field: large dispersion Falceta-Gonçalves, et al. (2008)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry19/30 Magnetic Field Strength from Chandrasekhar-Fermi Method B = x  1/2  v /  x: Ostriker et al.(2001); Padoan et al. (2001); Heitsch et al. (2001); Falceta-Goncalves et al. (2008) strong field: small dispersionweak field: large dispersion Falceta-Gonçalves, et al. (2008) B  80  G

Grain Alignment & Composition current theory of grain alignment (Lazarian et al.): –Paramagnetic relaxation no longer needed. –Instead, radiative torques on asymmetric grains will do. –Alignment with polarization perpendicular to field still applies. Observational tests possible. 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry20/30 Vaillancourt et al. (2008)

Into the Next Decade optical/near-IR: big surveys of starlight polarization FIR: –BLASTpol: mapping full molecular clouds –SOFIA: precision application of Chandrasekhar-Fermi submm: –Planck: all-sky polarization survey –ALMA: great for circumstellar dust? radio: EVLA, GBT 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry21/30

HAWCpol/SOFIA 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry22/30 observation bands 53, 89, 155, 216  m angular resolution5 – 22 arcsec field of view0.5×1.2 – 1.6×4.3 arcmin 2 polarization modulation techniquequartz half-wave plate, 15 rpm minimum flux density to achieve  (P) = 0.2% in 5 hour integration 9, 6, 6, 5 Jy minimum column density to achieve  (P) = 0.2% in 5 hour integration A V = 1, 2, 5, 4 systematic error goal  P < 0.2%;  < 2° started Oct on JPL internal funds permanent upgrade to HAWC good for sources up to ~8’

Required Polarization Sensitivity typical degree polarization = 3% typical intrinsic dispersion = 10° – 30°   (  ) = 3°,  (P) = 0.3%  photometric signal-to-noise of 500 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry23/30 Hildebrand et al. (1999)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry24/30 Far-IR polarimetry is 10 6  faster from space. sensitivity to extended emission BLASTpol

Giant Steps MIDEX-class FIR polarization survey SAFIR polarimeter SPIRIT polarimeter EPIC (CMBPol) with extended high- frequency coverage SKA 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry25/30

Dedicated Polarization Survey 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry26/30 PIREX/M4 (Clemens, P.I.; Goodman; Jones) –satellite proposed to NASA 1990, 1993, 1996 –possible reasons for non-selection: Polarimetry not a scientific priority for NASA. Difficult for a cryogenic mission to compete on the NASA SMEX playing field. Unsuccessful Origins Probe proposal to study FIR polarimeter and C + heterodyne spectrometer on 0.5 – 1 m telescope (Dowell, Langer et al.) M4: 0.2 m cold telescope

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry27/30 with SAFIR/CALISTO: 5 hours integration time (10 4 detectors) 5” = 20 pc resolution at = 100  m likely detection of polarization wherever A V > 0.3 MIPS 24  m (Gordon et al.)

EPIC Polarization Mapping EPIC/850 GHz can make accurate polarization maps with 10 8 resolution elements. coverage map,  (P) ≤ 0.3% Planck/350GHz 5’ EPIC/850GHz 40K, 5’ EPIC/850GHz 4K, 1’ 3/11/0928 C. D. Dowell, Keck Institute/Dust Polarimetry

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry29/30 Enabling Technologies for Space Far-IR Polarimetry polarization-sensitive detectors polarization modulation –low-power cryogenic rotating quartz half-wave plate –scan modulation only (Boomerang  Planck) Good polarimeters usually make good cameras. –NEP = W Hz -1/2 is adequate for detectors.

Antenna-Coupled 200  m TES Detector 3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry30/30 work by Peter Day et al. (JPL/Caltech)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry31/30 “If nuclear and gravitational forces were the only forces at work in the universe, the broad pattern of cosmic evolution would be one of gradual thermal degradation punctuated by occasional explosive events. The cosmos would resemble the serene and monotonous heavens of classical conception. There is, however, a cosmic agitator: the magnetic field. Although only a small part of the available energy in the universe is invested in magnetic fields, they are responsible for most of the continual violent activity of the cosmos, from auroral displays in the earth's atmosphere to stellar flares and X-ray emission, and the massing of clouds of interstellar gas in galaxies.” E. Parker, Scientific American (1983)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry33/22 Theory and modeling will play an important role in interpretation of polarimetry. MHD simulations to get factors of order unity in application of Chandrasekhar-Fermi method magnetic field models of specific structures –forming molecular clouds –collapsing cores: magnetic regulation, magnetic braking –circumstellar disks and envelopes –accretion into Galactic center dust grain alignment theory to understand environmental effects on and wavelength dependence of polarization

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry34/22 Polarization Power Spectrum: Probe of Turbulence

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry35/22 Magnetic Field Strengths in Interstellar Clouds Crutcher (2008) strong field weak field

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry36/22 Polarization Power Spectrum: Probe of Turbulence Some expectation of steepening of spectrum at ambipolar diffusion length scale  pc  1” in Orion (Li & Houde 2008)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry37/22 Magnetic fields and IR astrophysics large-scale gas flows in galaxies timescale of cloud and star formation shapes of clouds turbulence disk, wind, jet, and shock physics

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry38/22 Multi-Wavelength Imaging and Polarimetry warm and cold components in Galactic center circumnuclear ring Vaillancourt et al. (2008) continuum polarization spectrum normalized to 350  m 32  m450  m Latvakoski et al. (1999)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry39/22 B pos vs. elongation angle in cloud cores Tassis et al. (2008) roundelongated data from Dotson et al. (2000, 2008)

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry40/22 Space far-IR polarimetry with a 5+ m telescope is an essential tool. Consider a modest instrument on a 5 m telescope cooled to 4 K (‘CALISTO’): –1000 polarization-sensitive pixels covering bands at =  m (most of the mass and luminosity, component separation) –angular resolution 5˝ at 100  m (protostellar size scale) CALISTO: design concept for SAFIR

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry41/22 Prospects for space far-IR polarimetry Infrared Space Observatory ( ): polarimeter add-on, limited results M4: not funded Spitzer Space Telescope ( ): no polarimetry Herschel Space Obs. ( ): no polarimetry Planck ( ): all-sky survey, 300˝ resolution SPICA ( ): no polarimetry planned 2001 Decadal Survey: –“Magnetic fields play a crucial role in … the formation of stars….” –“Polarization” only mentioned in context of CMB. Much the same story in NASA science plans. Conclusion: Need to start campaigning early for a polarimeter on a big, cold telescope.

3/11/09C. D. Dowell, Keck Institute/Dust Polarimetry42/22 Wide Polarization Survey from Space Map 100 square degrees worth of molecular clouds at = 100  m (5˝ resolution with 5 m telescope): –Detect polarization where A V ≥ 0.3 –Requires 50 hours with 10,000 pixel detector array Contours show regions where  (P) would be < 0.3%. Millions of polarization vectors  map of magnetic field structure and strength on almost all relevant angular scales. Orion A Orion B  Oph 10º