1 Pertemuan 8 Representing Knowledge Using Rules Matakuliah: T0264/Inteligensia Semu Tahun: 2005 Versi: 1.

Slides:



Advertisements
Similar presentations
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
Advertisements

Pertemuan 03 Teori Peluang (Probabilitas)
1 Pertemuan 16 First & Second Conditionals Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 12 Binary Search Tree Matakuliah: T0026/Struktur Data Tahun: 2005 Versi: 1/1.
1 Pertemuan 04 Proxy/Cache Matakuliah: H0491/Praktikum Jaringan Komputer Tahun: 2005 Versi: 1/0.
1 Pertemuan 22 Radix Sort Matakuliah: T0016/Algoritma dan Pemrograman Tahun: 2005 Versi: versi 2.
1 Pertemuan 6 Elementary UDP Sockets Matakuliah: H0483 / Network Programming Tahun: 2005 Versi: 1.0.
1 Pertemuan 22 Expressions of Time and preference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
12 - Organisation Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
Session 5 JavaScript/JScript: Control Structures II Matakuliah: M0114/Web Based Programming Tahun: 2005 Versi: 5.
1 Pertemuan 17 Third Conditional Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 2 PROBLEMS, PROBLEM SPACES, AND SEARCH Matakuliah: T0264/Inteligensia Semu Tahun: 2005 Versi: 1/0.
Using Rules Chapter 6. 2 Logic Programming (Definite) logic program: A  B 1, B 2, …, B m program clause (Horn) head body  A 1, A 2, …, A n goal clause.
1 Chapter 3 Knowledge Representation AI & ESChapter 3 2 Knowledge Representation Semantic Network Network Representation Conceptual Graph Frame.
1 Pertemuan 23 Syntatic Processing Matakuliah: T0264/Intelijensia Semu Tahun: 2005 Versi: 1/0.
1 Pertemuan 10 Arsitektur Jaringan Model OSI Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0.
1 Pertemuan 21 More Future Forms Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 26 Object Relational Database Management System (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 16 Object Query Language (Lanjutan bagian 3) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 23 Object database design (Lanjutan bagian 2) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 13 BACK PROPAGATION Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
1 Pertemuan 7 Future Continuous & Future Perfect Matakuliah: G0134/Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 14 Object Query Language (Lanjutan bagian 1) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 5 The structure part of object data model Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 04 Expression Matakuliah: D0524 / Algoritma dan Pemrograman Komputer Tahun: 2005 Versi:
07 - Advertising Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
1 Pertemuan 9 Making an outline Matakuliah: G1072 – Reading 1 Tahun: 2005 Versi: revisi 0.
03 - Globalisation Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
1 Pertemuan 21 Parallelism and Superscalar Matakuliah: H0344/Organisasi dan Arsitektur Komputer Tahun: 2005 Versi: 1/1.
1 Pertemuan 6 RULE-BASED SYSTEMS Matakuliah: H0383/Sistem Berbasis Pengetahuan Tahun: 2005 Versi: 1/0.
1 Pertemuan 7 Scanning Matakuliah: G1072 Reading 1 Tahun: 2005 Versi: revisi 0.
1 Pertemuan 21 Audit Reporting Matakuliah:A0274/Pengelolaan Fungsi Audit Sistem Informasi Tahun: 2005 Versi: 1/1.
1 Pertemuan 17 Building Object Database Application Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 05 Selection Matakuliah: D0524 / Algoritma dan Pemrograman Komputer Tahun: 2005 Versi:
1 Pertemuan 11 QUIZ Matakuliah: J0274/Akuntansi Manajemen Tahun: 2005 Versi: 01/00.
11 - Innovation Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
1 Pertemuan 20 Time & Condition Clauses with Future reference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 18 I wish, If only Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 7 The Object Definition Language Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 1 WHAT IS ARTIFICIAL INTELLIGENCE ? Matakuliah: T0264/Inteligensia Semu Tahun: 2005 Versi: 1/0.
1 Pertemuan 6 Nouns & Adjectives Matakuliah: G Reading 1 Tahun: 2005 Versi: 0.
1 Pertemuan 6 The structure part of object data model (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan #3 Clocks and Realtime Matakuliah: H0232/Sistem Waktu Nyata Tahun: 2005 Versi: 1/5.
1 Pertemuan 14 Phrases of agreement Matakuliah: G0134/Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 06 Repetition Matakuliah: D0524 / Algoritma dan Pemrograman Komputer Tahun: 2005 Versi:
1 Pertemuan 25 Making It Happen Matakuliah: A0194/Pengendalian Rekayasa Ulang Informasi Tahun: 2005 Versi: 1/5.
13 - Organisation Matakuliah: G0622/Bahasa Inggris 1 Tahun: 2005 Versi: 1.01.
1 Pertemuan 20 Understanding Continued Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
1 Pertemuan 12 Making Inferences Matakuliah: G1072/Reading 1 Tahun: 2005 Versi: revisi 0.
1 Pertemuan 8 The Object Definition Language (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Human-Computer Interaction Web Interface & Natural Language.
CS 100Lecture 281 CS100J Lecture 27 n Previous Lecture –Interfaces –Comparable –Reflection –super –Re-Reading: n Lewis & Loftus, Section 5.5 n Savitch,
Logical Agents Logic Propositional Logic Summary
1 Pertemuan 26 Making It Happen Matakuliah: A0194/Pengendalian Rekayasa Ulang Informasi Tahun: 2005 Versi: 1/5.
1 Pertemuan 24 Forming the Passive Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 16 The Business Owner’s View Matakuliah: A0194/Pengendalian Rekayasa Ulang Informasi Tahun: 2005 Versi: 1/5.
1 Pertemuan 8 Representing Knowledge Using Rules Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
1 Pertemuan 8 Perenc & Peranc Sambungan Matakuliah: D0472/PERANCANGAN ELEMEN MESIN Tahun: 2005 Versi:
1 Pertemuan 6 The Future Matakuliah: G0134/Grammar III Tahun: 2005 Versi: revisi 1.
Chapter 6 Representing Knowledge Using Rules Artificial Intelligence ดร. วิภาดา เวทย์ประสิทธิ์ ภาควิชาวิทยาการคอมพิวเตอร์ คณะ วิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์
1 Pertemuan 23 Making It Happen Matakuliah: A0194/Pengendalian Rekayasa Ulang Informasi Tahun: 2005 Versi: 1/5.
Matakuliah : D0524 / Algoritma dan Pemrograman Komputer
Pertemuan 2 PROBLEMS, PROBLEM SPACES, AND SEARCH
Pertemuan 20 The Business Views of the Technology Architecture
Table Pertemuan 10 Matakuliah : L0182 / Web & Animation Design
Pertemuan 20 Building Object Database Application (Lanjutan bagian 3)
Pertemuan 22 The Business Views of the Technology Architecture
Pertemuan 10 Modal Verbs (2) + link words
Matakuliah : Web Design
Presentation transcript:

1 Pertemuan 8 Representing Knowledge Using Rules Matakuliah: T0264/Inteligensia Semu Tahun: 2005 Versi: 1

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : >

3 Outline Materi Materi 1 Materi 2 Materi 3 Materi 4 Materi 5

4 6.1 Procedural vs Declarative Knowledge Consider the knowledge base : man(Marcus) man(Caesar) person(Cleopatra)  x : man(x)  person(x) Supose we want to answer the question  y : person(y)

5 6.1 Procedural vs Declarative Knowledge We could answer with any one of : y = Marcus y = Caesar y = Cleopatra Now consider an alternative KB : man(Marcus) man(Caesar)  x : man(x)  person(x) person(Cleopatra)

6 6.2 Logic Programming PROLOG A PROLOG program is composed of a set of Horn clauses. A Horn clause is a clause that has at most one positive literal. Examples : p  p  q r  s  r  s

7 6.2 Logic Programming A Declarative and a Procedural Representation A Representation in Logic  x : pet(x)  small(x)  apartmentpet(x)  x : cat(x)  dog(x)  pet(x)  x : poodle(x)  dog(x)  small(x) poodle(fluffy)

8 6.2 Logic Programming A Representation in PROLOG apartmentpet(x): - pet(x), small(x). pet(x): - cat(x). pet(x): - dog(x). dog(x): - poodle(x). small(x): - poodle(x). poodle(fluffy).

9 6.2 Logic Programming Answering Question in PROLOG ?- apartmentpet(x). ?- cat(fluffy). ?- cat(mittens).

Forward vs Backward Reasoning Number of start and goal states. Branching factor in each direction. Need to justify reasoning. Triggers for problem solving.

Forward vs Backward Reasoning Sample or the Rules for Solving the 8- Puzzle Assume the areas of the tray are numbered:

Forward vs Backward Reasoning Square 1 empty and Square 2 contains tile n  Square 2 empty and Square 1 contains tile n Square 1 empty and Square 4 contains tile n  Square 4 empty and Square 1 contains tile n Square 2 empty and Square 1 contains tile n  Square 1 empty and Square 2 contains tile n

Forward vs Backward Reasoning An Example :

Forward vs Backward Reasoning A Bad Use of Heuristic Bidirectional Search

Matching Representation Affects Matching

Matching White pawn at Square(file e, rank 2) AND Square(file e, rank 3)  move pawn from is empty Square(file e, rank 2) ANDto Square(file e, rank 4) Square(file e, rank 4) is empty

Matching Many-to-Many Matching The temporal nature of data. Structural similarity in rules. mammal(x)  feline(x)  jaguar(x) carnivorous(x)  has-spots(x) mammal(x)  feline(x)  tiger(x) carnivorous(x)  has-stripes(x)

Matching Persistance of variable binding consistency. son(x,y)   grandparent(x,z) son(y,z)

Matching A Bit of Dialogue with ELIZA Person:Men are all alike. ELIZA:In what way? Person:They’re always bugging us about something or other. ELIZA:Can you think of a specific example? Person:Well, my boyfriend made me come here. ELIZA:Your boyfriend made you come here.

Matching Person:He says I’m depressed much of the time. ELIZA:I am sorry to hear you are depressed. Person:It’s true. I am unhappy. ELIZA:Do you think coming here will help you not to be unhappy? Person:I need some help, that much seems certain. ELIZA:What would it mean to you if you got some help?

Matching Person:Perhaps I could learn to get along with my mother. ELIZA:Tell me more about your family.

Matching Some ELIZA - like rules (X me Y)  (X you Y) (I remember Z)  (Why do remember X just now ?) (My {family-member} is Y)  (Who else in your family is Y) (X {family-member} Y)  (Tell me more about your family)

Matching Conflict Resolution Preferences based on rules  Rule order  Prefer special cases over more general ones Preferences based on objects  Prefer some objects to others  location in STM Preferences based on states

Control Knowledge Syntax for a Control Rule Under conditions A and B, Rules that do {not} mention X { at all, in their left-hand side, in their right-hand side}

Control Knowledge will { definitely be useless, probably be useless... probably be especially useful definitely be especially useful}

26 >