© The McGraw-Hill Companies, Inc., 2004 1 Chapter 11 Just-in-Time and Lean Systems.

Slides:



Advertisements
Similar presentations
Lean Manufacturing & Just-in-Time
Advertisements

14–1. 14–2 Chapter Fourteen Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Lean Supply Chains Chapter Fourteen McGraw-Hill/Irwin
JIT AND LEAN PRODUCTION SYSTEM BY AMAR P. NARKHEDE.
Fundamentals of Operations Management 4e© The McGraw-Hill Companies, Inc., –1 Managerial Issues Using JIT as a tool for controlling the flow of materials,
Chapter 9: Lean Manufacturing © Holmes Miller 1999.
Chapter 12 Lean Manufacturing.
Just-in-Time. © The McGraw-Hill Companies, Inc., 2004 B Operations -- Prof. Juran2 Outline The Goal debrief JIT Defined The Toyota Production.
JIT, TPS, and Lean Operations
Just-In-Time and Lean Systems
Just-in-Time and Lean Systems
Operations Management Just-in-Time Systems Supplement 12
Just-In-Time Philosophy
© 2007 Pearson Education Lean Systems Chapter 9. © 2007 Pearson Education How Lean Systems fits the Operations Management Philosophy Operations As a Competitive.
Lean Systems and JIT.
Chapter 16 - Lean Systems Focus on operations strategy, process, technology, quality, capacity, layout, supply chains, and inventory. Operations systems.
S12-1 Operations Management Just-in-Time and Lean Production Systems Chapter 16.
JIT and Lean Operations
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
JIT and Lean Operations. MRP (push) and JIT (pull) system PULL SYSTEM PUSH SYSTEM A PUSH system where material is moved on to the next stage as soon as.
Lean and Sustainable Supply Chains. 1. Describe how Green and Lean can complement each other. 2. Explain how a production pull system works. 3. Understand.
Operations Management
1 Chapter 16 Just-In-Time Systems. 2 JIT/Lean Production Just-in-time: Repetitive production system in which processing and movement of materials and.
JIT and Lean Operations
Chapter 7, Lean Thinking and Lean Systems
Alissa Brink Gabriela Iasevoli Jason Oesterle Joey Tamburo
ISQA 459 Mellie Pullman 1.  JIT can be defined as an integrated set of activities designed to achieve high-volume production using minimal inventories.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. JIT and Lean Operations.
Just-in-Time (JIT) and Lean Systems Chapter 7. MGMT 326 Foundations of Operations Introduction Strategy Quality Assurance Facilities Planning & Control.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 15 JIT and Lean Operations.
Lean Production - Objectives
MBA.782.J.I.T.CAJ Operations Management Just-In-Time J.I.T. Philosophy Characteristics of J.I.T. J.I.T. in Services J.I.T. Implementation Issues.
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Just-in-Time and Lean Systems Chapter 16.
© 1997 Prentice-Hall, Inc Principles of Operations Management Just-In-Time Systems Chapter 11.
Just-in Time Management Supplier Partnerships B7801 April 17, 1998
Manufacturing.  Manufacturing is all about converting raw material into consumer or industrial products.  A firms manufacturing competency is based.
Just-In-Time & Lean Systems
JIT and Lean Operations
Chapter 7 – Just-in-Time and Lean Systems
Just-in-Time and Lean Systems
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc., All Rights Reserved. 1 LEAN SYSTEMS TOOLS AND PROCEDURES.
Chapter 12 Just-in-Time and Lean Manufacturing. What is JIT? (Just-in-Time) An operations philosophy involving many techniques for improving the effectiveness.
The philosophy of JIT can be traced back to Henry Ford, but formalized JIT originated in Japan as the Toyota Production System. W. Edwards Deming’s lesson.
Lean and Sustainable Supply Chains
Lean Production and the Just-in-Time Philosophy. Lean Production Elimination of All Waste – Waste is Anything that Does Not Add Value to Product. Continuous.
1 Slides used in class may be different from slides in student pack Chapter 12 Just-in-Time and Lean Systems  JIT Defined  The Japanese Approach to Productivity.
1 Slides used in class may be different from slides in student pack Chapter 12 Lean/Just-in-Time (JIT) Production  JIT Defined  The Japanese Approach.
1-1 McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved 1 Chapter 12 Lean Manufacturing (Just-in-Time)
JIT and Lean Operations Group Members:. JIT/Lean Production Just-in-time (JIT): A highly coordinated processing system in which goods move through the.
Just-in-Time (JIT) and Lean Systems Chapter 7. Management 326 Operations and Operations Strategy Designing an Operations System Managing an Operations.
Lab #4: Pull and Perfection MG/IE 3400 – Production System Design.
Operations Fall 2015 Bruce Duggan Providence University College.
© The McGraw-Hill Companies, Inc., Just-in-Time and Lean Systems.
Production and Operations Management: Manufacturing and Services
EMBA-2, BUP EO Just-in-Time / Lean Production.
CHAPTER 15 LEAN SYSTEM. THE CONCEPTS Operation systems that are designed to create efficient processes by taking a total system perspective Known as zero.
Purposes of Inventory 1. To maintain independence of operations. 2. To meet variation in product demand. 3. To allow flexibility in production scheduling.
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. Lean Supply Chains Chapter 12.
1 © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved Chapter 12 Lean Production.
16-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Lean Manufacturing CHAPTER 9. After completing the chapter you will:  Learn how a production pull system works  Study Toyota Production System concepts.
CHAPTER 9 Lean Manufacturing.
Chapter 12 Lean Production. Chapter 12 Lean Production.
Lean Supply Chains Chapter 14
McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved
Operations Management
Chapter 12 Just-in-Time and Lean Systems
Chapter 12 Lean Production. Chapter 12 Lean Production.
JIT(JUST-IN-TIME) VARUN BABU
Presentation transcript:

© The McGraw-Hill Companies, Inc., Chapter 11 Just-in-Time and Lean Systems

© The McGraw-Hill Companies, Inc., JIT Defined The Toyota Production System JIT Implementation Requirements JIT in Services OBJECTIVES

© The McGraw-Hill Companies, Inc., Just-In-Time (JIT) Defined JIT can be defined as an integrated set of activities designed to achieve high-volume production using minimal inventories (raw materials, work in process, and finished goods) JIT also involves the elimination of waste in production effort JIT also involves the timing of production resources (i.e., parts arrive at the next workstation “just in time”)

© The McGraw-Hill Companies, Inc., Characteristics of JIT JIT is popularly known as stockless production Produce just enough to meet demand Inventory is wasteful —Labor and materials —Equipment and time —Storage and insurance —Capital, etc. Quality must be at the source

© The McGraw-Hill Companies, Inc., JIT and Lean Management JIT can be divided into two terms: “Big JIT” and “Little JIT” Big JIT (also called Lean Management) is a philosophy of operations management that seeks to eliminate waste in all aspects of a firm’s production activities: human relations, vendor relations, technology, and the management of materials and inventory Little JIT focuses more narrowly on scheduling goods inventory and providing service resources where and when needed

© The McGraw-Hill Companies, Inc., JIT Demand-Pull Logic Customers Sub Fab Vendor Final Assembly Here the customer starts the process, pulling an inventory item from Final Assembly… Then sub-assembly work is pulled forward by that demand… The process continues throughout the entire production process and supply chain

© The McGraw-Hill Companies, Inc., The Japanese Approach to Productivity Imported technologies Efforts concentrated on shop floor Quality improvement focus Elimination of waste Respect for people

© The McGraw-Hill Companies, Inc., The Toyota Production System Based on two philosophies: 1.Elimination of waste 2.Respect for people

© The McGraw-Hill Companies, Inc., Waste in Operations 1.Waste from overproduction 2.Waste of waiting time 3.Transportation waste 4.Inventory waste 5.Processing waste 6.Waste of motion 7.Waste from product defects

© The McGraw-Hill Companies, Inc., Minimizing Waste: Focused Factory Networks Small specialized plants Thinner is better —Better control —Bolsters specialization and excellence —More economical to manage Large vertically integrated operations are: —Bureaucratic —Difficult to manage

© The McGraw-Hill Companies, Inc., Minimizing Waste: Focused Factory Networks Coordination System Integration These are small specialized plants that limit the range of products produced (sometimes only one type of product for an entire facility) Some plants in Japan have as few as 30 and as many as 1000 employees

© The McGraw-Hill Companies, Inc., Minimizing Waste: Group Technology Identification of: —Machine cells —Part families Based on similarities in: —Design —Manufacture Saves time and effort

© The McGraw-Hill Companies, Inc., Minimizing Waste: Group Technology (Part 1) Using Departmental Specialization for plant layout can cause a lot of unnecessary material movement Saw LathePress Grinder Lathe Saw Press Heat Treat Grinder Note how the flow lines are going back and forth

© The McGraw-Hill Companies, Inc., Minimizing Waste: Group Technology (Part 2) Revising by using Group Technology Cells can reduce movement and improve product flow Press Lathe Grinder A 2 B Saw Heat Treat LatheSaw Lathe Press Lathe 1

© The McGraw-Hill Companies, Inc., Minimizing Waste Use of Other Technologies Robotics Supply chain management Value stream mapping Flexible manufacturing systems Computer integrated manufacturing systems Expert systems Neural networks

© The McGraw-Hill Companies, Inc., Minimizing Waste: Quality at the Source  Self-inspection —Limited use of QC departments  Automated inspection  Line-stopping empowerment —Quality before quantity

© The McGraw-Hill Companies, Inc., Minimizing Waste: JIT Production Produce......what is needed......when it’s needed......NOTHING MORE!

© The McGraw-Hill Companies, Inc., Minimizing Waste: Uniform Plant Loading This does not mean building a single product. But maintaining a stable mix of products, and firm monthly schedules.

© The McGraw-Hill Companies, Inc., Minimizing Waste: Uniform Plant Loading (heijunka) Not uniformJan. UnitsFeb. UnitsMar. UnitsTotal 1,2003,5004,3009,000 UniformJan. UnitsFeb. UnitsMar. UnitsTotal 3,0003,0003,0009,000 Suppose we operate a production plant that produces a single product. The schedule of production for this product could be accomplished using either of the two plant loading schedules below. How does the uniform loading help save labor costs? or

© The McGraw-Hill Companies, Inc., Minimizing Waste: Just-In-Time Production Management philosophy “Pull” system through the plant WHAT IT IS Employee participation Industrial engineering/basics Continuing improvement Total quality control Small lot sizes WHAT IT REQUIRES Attacks waste Exposes problems and bottlenecks Achieves streamlined production WHAT IT DOES Stable environment WHAT IT ASSUMES

© The McGraw-Hill Companies, Inc., Minimizing Waste: Inventory Hides Problems Work in process queues (banks) Change orders Engineering design redundancies Vendor delinquencies Scrap Design backlogs Machine downtime Decision backlogs Inspection backlogs Paperwork backlog Example: By identifying defective items from a vendor early in the production process the downstream work is saved Example: By identifying defective work by employees upstream, the downstream work is saved

© The McGraw-Hill Companies, Inc., Minimizing Waste: Kanban Production Control System Uses signaling system to regulate JIT flows Kanban—sign or instruction card Kanban system is a pull system —Authority to produce comes from downstream —It is a form of information system —Production kanban--can be single card if move distance is short —Move (withdrawal, conveyance) kanban

© The McGraw-Hill Companies, Inc., Kanban Production System Objectives —Lead time reduction —Lot size reduction —Waste elimination One of several tools of Lean Mfg. —Ineffective without others —Prerequisites must be met

© The McGraw-Hill Companies, Inc., Rules of Kanban Production System Withdraw only the quantity needed Produce only the quantity given by kanban Kanban is withdrawal/production authority Move only good parts Smooth and level production Decrease number of cards to reduce inventory

© The McGraw-Hill Companies, Inc., Minimizing Waste: Kanban Production Control Systems Storage Part A Machine Center Assembly Line Material Flow Card (signal) Flow Withdrawal kanban Once the Production kanban is received, the Machine Center produces a unit to replace the one taken by the Assembly Line people in the first place This puts the system back were it was before the item was pulled The process begins by the Assembly Line people pulling Part A from Storage Production kanban

© The McGraw-Hill Companies, Inc., Determining the Number of Kanbans Needed Setting up a kanban system requires determining the number of kanbans cards (or containers) needed Each container represents the minimum production lot size An accurate estimate of the lead time required to produce a container is key to determining how many kanbans are required

© The McGraw-Hill Companies, Inc., The Number of Kanban Card Sets k = Number of kanban card sets (a set is a card) D = Average number of units demanded over some time period L = lead time to replenish an order (same units of time as demand) S = Safety stock expressed as a percentage of demand during lead time C = Container size

© The McGraw-Hill Companies, Inc., Example of Kanban Card Determination: Problem Data A switch assembly is assembled in batches of 4 units from an “upstream” assembly area and delivered in a special container to a “downstream” control-panel assembly operation The control-panel assembly area requires 5 switch assemblies per hour The switch assembly area can produce a container of switch assemblies in 2 hours Safety stock has been set at 10% of needed inventory

© The McGraw-Hill Companies, Inc., Example of Kanban Card Determination: Calculations Always round up!

© The McGraw-Hill Companies, Inc., Minimizing Waste: Minimized Setup Times  What are the consequences of long setup times? —Long manufacturing lead times —Increased cost —Reduced capacity  A requirement for small-lot-size, mixed- model production? —Practice more setups to reduce time/setup —Fixed production quantity--improves setup —SMED

© The McGraw-Hill Companies, Inc., Respect for People Strive to maintain level payrolls Workers as assets Cooperative employee unions Subcontractor networks Bottom-round management style Quality circles (Small Group Involvement Activities or SGIA’s)

© The McGraw-Hill Companies, Inc., Toyota Production System’s Four Rules 1.All work shall be highly specified as to content, sequence, timing, and outcome 2.Every customer-supplier connection must be direct, and there must be an unambiguous yes-or-no way to send requests and receive responses 3.The pathway for every product and service must be simple and direct 4.Any improvement must be made in accordance with the scientific method, under the guidance of a teacher, at the lowest possible level in the organization

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Design Flow Process Link operations Balance workstation capacities Redesign layout for flow Emphasize preventive maintenance Reduce lot sizes Reduce setup/changeover time

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Total Quality Control Design for quality and quality at the source Worker responsibility/quality culture Measure SQC and use achievable goals Enforce compliance Fail-safe methods Automatic inspection

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Stabilize Schedule Level schedule –Pull materials into final assembly in uniform pattern Underutilize capacity –Realized by removing excess inventory –Inventory less likely with quality and equipment maintenance Establish freeze windows –Fixed schedule with no further changes possible

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Kanban-Pull Demand pull Backflush –Used to explode end item’s BOM to determine how many of each product went into it Reduce lot sizes

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Work with Vendors Limited number of suppliers for better control Reduce lead times Frequent deliveries Project usage requirements Quality expectations

© The McGraw-Hill Companies, Inc., JIT Requirements: Planning and Control Plan for quality Uniform production rate —Smooth flow of materials —Emphasize rate not capacity —Refocused productivity Less expensive machines Push towards lot size of one —Less expensive machines

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Reduce Inventory More Look for other areas Stores Transit Carousels Conveyors

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Improve Product Design Standard product configuration Standardize and reduce number of parts Process design with product design Quality expectations

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Concurrently Solve Problems Root cause Solve permanently Team approach Line and specialist responsibility Continual education

© The McGraw-Hill Companies, Inc., JIT Implementation Requirements: Measure Performance Emphasize improvement Track trends

© The McGraw-Hill Companies, Inc., JIT in Services (Examples) Organize Problem-Solving Groups Upgrade Housekeeping Upgrade Quality Clarify Process Flows Revise Equipment and Process Technologies

© The McGraw-Hill Companies, Inc., JIT in Services (Examples) Level the Facility Load Eliminate Unnecessary Activities Reorganize Physical Configuration Introduce Demand-Pull Scheduling Develop Supplier Networks

© The McGraw-Hill Companies, Inc., Performance Measurement Quality levels Customer satisfaction Equipment effectiveness Supplier performance Throughput time Inventory levels Setup/lead time reduction Layout efficiency

© The McGraw-Hill Companies, Inc., Other Tools: Visual Control (5s) Sort—Seiri (organization; find what’s not needed) Set in order—Seiton (place for everything) Shine—Seiso (cleanliness) Standardize—Seiketsu (develop/maintain stds.) Sustain—Shitsuke (self-discipline)

© The McGraw-Hill Companies, Inc., The Clean Workplace Schedule Returns Problems Store Tools Close to the Point of use Procedures Posted Part A Part B Post all pertinent Information Outgoing Holding areas Identified