Arbitrary Waveforms Lecture L8.5 Section 7.2. CLK DQ !Q CLK DQ !Q CLK DQ !Q Q0Q0.D Q1 Q2 Q1.D Q2.D s0 0 0 0 0 0 1 s1 0 0 1 0 1 0 s2 0 1 0 0 1 1 s3 0 1.

Slides:



Advertisements
Similar presentations
Counters Discussion D8.3.
Advertisements

Modulo-N Counters Module M10.4 Section 7.2.
VHDL Lecture 1 Megan Peck EECS 443 Spring 08.
Encoders Module M9.3 Section 6.3. Encoders Priority Encoders TTL Encoders.
Demultiplexers Module M6.4 Section 6.4. Demultiplexers YIN 1 x 4 DeMUX d0d1 Y0 Y1 Y2 Y3 Y0 Y1 Y2 Y3 d1d0 0 0 YIN YIN YIN
Shift Registers Module M11.1 Section 7.3.
7-Segment Displays Lecture L6.1 Section 6.3. Turning on an LED.
Latches and Flip-Flops Discussion D8.1 Section 13-9.
1 EE121 John Wakerly Lecture #10 Some shift-register stuff Sequential-circuit analysis.
Binary Counters Module M10.3 Section 7.2. Counters 3-Bit Up Counter 3-Bit Down Counter Up-Down Counter.
Arbitrary Waveform Discussion 5.5 Example 34.
7-Segment Displays Lecture L6.7 Section 6.5. Turning on an LED.
Binary-to-BCD Converter Lecture L6.2 Section 6.5 pp
CMPUT Computer Organization and Architecture II1 CMPUT329 - Fall 2003 TopicJ: Counters José Nelson Amaral.
Using State Machines as Control Circuits Lecture L9.4.
Multiplier Lecture L7.3 Section 10.4 (p.276) Section 7.3 (Handout)
Multiplexers Lecture L6.4 Section 6.4.
Subtractors Module M8.2 Section 6.2. Subtractors Half Subtractor Full Subtractor Adder/Subtractor - 1 Adder/Subtractor - 2.
Designing State Machines Lecture L9.2 Handout Section 9.2.
Datapaths Lecture L10.2 Sections 10.2, ALU (Sect. 7.5 and Lab 6)
Counters as State Machines Lecture L9.1 Handout Section 9.1.
Designing State Machines SQRT controller Lecture L9.2a Section 9.2.
Equality Detector Lecture L6.1 Section 6.1. Equality Detector XNOR X Y Z Z = !(X $ Y) X Y Z
Flip-Flops Module M10.2 Section 7.1. D Latch Q !Q CLK D !S !R S R X 0 Q 0 !Q 0 D CLK Q !Q Note that Q follows D when the clock in high, and.
Counters Mano & Kime Sections 5-4, 5-5. Counters Ripple Counter Synchronous Binary Counters –Design with D Flip-Flops –Design with J-K Flip-Flops Counters.
Binary Counters Lecture L8.3 Section 8.2. Counters 3-Bit Up Counter 3-Bit Down Counter Up-Down Counter.
Shifter Lecture L7.4 Group HW #4 Section 10.3.
Modulo-N Counters Lecture L8.4 Section 7.2. Counters Modulo-5 Counter 3-Bit Down Counter with Load and Timeout Modulo-N Down Counter.
Codes and Code Converters
Code Converters Module M7.1 Section 6.5. Code Converters Binary-to-BCD Converters ABEL TRUTH_TABLE Command.
Arbitrary Waveforms Module M10.5 Section 7.2. CLK DQ !Q CLK DQ !Q CLK DQ !Q Q0Q0.D Q1 Q2 Q1.D Q2.D s s s s3 0 1.
Arithmetic Logic Unit (ALU) Lecture L7.5 Section 7.5.
LEDs 7-Segment Displays
Pulse-Width Modulated DAC Lecture 11.3 Section 11.5.
Multiplexers Module M6.1 Section 6.4. Multiplexers A 4-to-1 MUX TTL Multiplexer A 2-to-1 MUX.
Adders Lecture L7.1 Section 6.2 Section 10.4 (pp )
Shifters Lecture L7.4 Section 7.4. MODULE shift TITLE 'shifter' DECLARATIONS " INPUT PINS " D3..D0 PIN 11,7,6,5; D = [D3..D0]; s2..s0 PIN 3,2,1; S.
Arbitrary Waveform Discussion 12.2 Example 34. Recall Divide-by-8 Counter Use q2, q1, q0 as inputs to a combinational circuit to produce an arbitrary.
Flip-Flops Lecture L8.2 Section 8.1. Recall the !S-!R Latch !S !R Q !Q !S !R Q !Q X Y nand 1 0 Set 1 0.
Counters Discussion 12.1 Example 33. Counters 3-Bit, Divide-by-8 Counter 3-Bit Behavioral Counter in Verilog Modulo-5 Counter An N-Bit Counter.
Decoders Module M9.1 Section 6.3. Decoders TTL Decoders.
Arithmetic Logic Unit (ALU) Lecture L9.3 Lab 10. ALU CB = carry_borrow flag Z = zero flag (Z = 1 if Y = 0)
Shift Registers Lecture L6.6 Section Bit Shift Register.
Equality Detector Lecture L6.3 Section 6.1. Equality Detector XNOR X Y Z Z = !(X $ Y) X Y Z
7-Segment Displays Module M7.2 Section 6.5. Turning on an LED Common Anode.
Flip-Flops Lecture L8.2 Section 7.1 – Book Sect. 8.1– Handout.
Digital Logic Review Discussion D8.7.
Address Decoders Lecture L6.10 Section 6.3. MOUSE Layout PROM 2716 RAM 6810 MPU 6802 PIA 6821 Address Bus (16 lines) Data Bus (8 lines) To outside world.
CS 140L Lecture 4 Professor CK Cheng 10/22/02. 1)F-F 2)Shift register 3)Counter (Asynchronous) 4)Counter (Synchronous)
EET 1131 Unit 11 Counter Circuits  Read Kleitz, Chapter 12, skipping Sections and  Homework #11 and Lab #11 due next week.  Quiz next week.
2017/4/24 CHAPTER 6 Counters Chapter 5 (Sections )
Traffic Lights Discussion D8.3a. Recall Divide-by-8 Counter Use Q2, Q1, Q0 as inputs to a combinational circuit to produce an arbitrary waveform. s0 0.
A Greatest Common Divisor (GCD) Processor Lecture L10.3 Sections 10.4, 10.5.
CS151 Introduction to Digital Design Chapter 3: Combinational Logic Design 3-1 Design Procedure 1Created by: Ms.Amany AlSaleh.
EE121 John Wakerly Lecture #9
Basic Counters: Part I Section 7-6 (pp ).
SYEN 3330 Digital SystemsJung H. Kim 1 SYEN 3330 Digital Systems Chapter 7 – Part 2.
Tutorial 9 Module 8 – 8.1,8.2,8.3. Question 1 Distinguish between vectored and non-vectored interrupts with an example Build a hardware circuit that can.
Mealy and Moore Machines Lecture 8 Overview Moore Machines Mealy Machines Sequential Circuits.
Digital Logic & Design Dr. Waseem Ikram Lecture No. 35.
D Flip-Flop.
Counters as State Machines
Using a State Machine to Design a Sequence Detector
Shift Registers Lecture L8.6 Section 8.3.
Designing Digital Circuits Using Hardware Description Languages (HDLs)
29-Nov-18 Counters Chapter 5 (Sections ).
EEL 3705 / 3705L Digital Logic Design
Analog-to-Digital Converters
Digital Logic & Design Dr. Waseem Ikram Lecture No. 36.
Magnitude Comparator Lecture L6.2 Section 6.1.
Presentation transcript:

Arbitrary Waveforms Lecture L8.5 Section 7.2

CLK DQ !Q CLK DQ !Q CLK DQ !Q Q0Q0.D Q1 Q2 Q1.D Q2.D s s s s s s s s State Q2 Q1 Q0 Q2.D Q1.D Q0.D Recall Divide-by-8 Counter Use Q2, Q1, Q0 as inputs to a combinational circuit to produce an arbitrary waveform.

s s s s s s s s State Q2 Q1 Q0 Q2.D Q1.D Q0.D y Example (See Exercise 7.10) Q2 Q1 Q y = !Q2 & !Q1 # Q2 & Q

MODULE waveform TITLE 'Divide by 8 Counter, waveform' DECLARATIONS hex7seg interface([D3..D0] -> [a,b,c,d,e,f,g]); d7R FUNCTIONAL_BLOCK hex7seg; " INPUT PINS " CLK PIN 12; " 1 Hz clock (jumper) clear PIN 11;" switch 1 " OUTPUT PINS " Q2..Q0 PIN 41,43,44 ISTYPE 'reg'; " LED Q = [Q2..Q0]; " 3-bit output vector Y PIN 35 ISTYPE 'com';" LED 9 [a,b,c,d,e,f,g] PIN 15,18,23,21,19,14,17 ISTYPE 'com'; " Rightmost (units) 7-segment LED display waveform.abl

EQUATIONS Q.AR = clear; Q.C = CLK; Q2.D = !Q2 & Q1 & Q0 # Q2 & !Q1 # Q2 & !Q0; Q1.D = !Q1 & Q0 # Q1 & !Q0; Q0.D = !Q0; [a,b,c,d,e,f,g] = d7R.[a,b,c,d,e,f,g]; d7R.[D2..D0] = Q; d7R.D3 = 0; Y = !Q2 & !Q1 # Q2 & Q0; waveform.abl (cont.)

test_vectors(CLK -> [Q,Y]).C. -> [1,1];.C. -> [2,0];.C. -> [3,0];.C. -> [4,0];.C. -> [5,1];.C. -> [6,0];.C. -> [7,1];.C. -> [0,1];.C. -> [1,1];.C. -> [2,0];.C. -> [3,0];.C. -> [4,0]; END waveform.abl (cont.)

Morse code --A

K-map for A