Coronal HXR sources a multi-wavelength perspective.

Slides:



Advertisements
Similar presentations
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Advertisements

Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
A flare compilation Lots of people including Louise Harra, Lidia van Driel Gesztelyi, Chris Goff, Sarah Matthews, Len Culhane, Cristina Mandrini, Pascal.
Multi-Wavelength Studies of Flare Activities with Solar-B ASAI Ayumi Kwasan Observatory, Kyoto University Solar-B Science February 4, 2003.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
TRACE Downflows and Energy Release Ayumi ASAI Kwasan Observatory, Kyoto University Magnetic Reconnection and the Dynamic Sun 9 September, Andrews.
Erupting flux rope, rising X-ray source and CME on 16 April 2002 C. Goff 1, L. van Driel-Gesztelyi 1,2,3, L. K. Harra 1, S. A. Matthews 1, and C.H. Mandrini.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
Super-Hot Thermal Plasmas in Solar Flares
RHESSI Observations of the 29-Oct-2003 Flare. 29-Oct-2003 General Info 29-OCT-03 GOES Start: 20:37, Peak: 20:49, End 21:01 Size X10 Position S19W09 (AR486)
Multiwavelength Study of Magnetic Reconnection Associated with Sigmoid Eruption Chang Liu BBSO/NJIT
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), J. Wolfson (LMSAL) & T. Metcalf (CORA)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Observations of the failed eruption of the magnetic flux rope – a direct application of the quadrupolar model for a solar flare Tomasz Mrozek Astronomical.
Energy Partition in X-Class Flares With G. Holman, G. Share, A. Panasyuk, A. Ciaravella, Y.-K. Ko, J. Kohl ½ m v 2 (bulk or turbulent) B 2 /8π —> 3nkT.
Coronal Micro-Events and Doppler Oscillations in Hot Active Region Loops Werner Curdt Max-Planck-Institut für Aeronomie Collaborative effort of: Tong Jiang.
The Yohkoh observations of solar flares Hugh Hudson UCB.
Properties of Prominence Motions Observed in the UV T. A. Kucera (NASA/GSFC) E. Landi (Artep Inc, NRL)
Superhot DEM (or DF?) RHESSI continuum with TRACE or EIT FeXXIV, SUMER FeXXI, GOES, or whatever.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), T. Metcalf, J. Wolfson (LMSAL), L. Fletcher & J.I. Khan (Glasgow)
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
RHESSI and global models of flares and CMEs: What is the status of the implosion conjecture? H.S. Hudson Space Sciences Lab, UC Berkeley.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Quick changes of photospheric magnetic field during flare-associated surges Leping Li, Huadong Chen, Suli Ma, Yunchun Jiang National Astronomical Observatory/Yunnan.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
September 21, 2005Peter Gallagher (UCD) Chromospheric Evaporation Peter Gallagher University College Dublin Ryan Milligan Queen’s University Belfast.
Locarno, 8 June 2005Peter Gallagher (UCD) Chromospheric Evaporation Peter Gallagher University College Dublin Ryan Milligan Queens University Belfast.
5 th RHESSI workshop, Locarno. WG 4 Report Participants: Steven ChristeSäm Krucker Brian DennisMonique Pick Lyndsay FletcherEd Schmahl Peter GallagherManuela.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
SHINE 2009 Signatures of spatially extended reconnection in solar flares Lyndsay Fletcher University of Glasgow.
Where is Coronal Plasma Heated? James A. Klimchuk NASA Goddard Space Flight Center, USA Stephen J. Bradshaw Rice University, USA Spiros Patsourakos University.
Radio obsevation of rapid acceleration in a slow filament eruption/fast coronal mass ejection event Kundu et al ApJ, 607, 530.
Time evolution of the chromospheric heating and evaporation process Case study of an M1.1 flare on 2014 September 6 Peter Young 1,2, Hui Tian 3, Katharine.
Measurement of the Reconnection Rate in Solar Flares H. Isobe 2004/12/6 Taiyo-Zasshikai.
ALFVEN WAVE ENERGY TRANSPORT IN SOLAR FLARES Lyndsay Fletcher University of Glasgow, UK. RAS Discussion Meeting, 8 Jan
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Coronal loops: new insights from EIS observations G. Del Zanna 1,2, S. Bradshaw 3, 1 MSSL, University College London, UK 2 DAMTP, University of Cambridge,
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
Today’s Papers 1. Flare-Related Magnetic Anomaly with a Sign Reversal Jiong Qiu and Dale E. Gary, 2003, ApJ, 599, Impulsive and Gradual Nonthermal.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
UV Spectroscopy of CME Currrent Sheets John Raymond Angela Ciaravella Silvio Giordano Dave Webb.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Nov. 8-11, th Solar-B science meeting Observational Analysis of the Relation between Coronal Loop Heating and Photospheric Magnetic Fields Y. Katsukawa.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Observations –Morphology –Quantitative properties Underlying Physics –Aly-Sturrock limit Present Theories/Models Coronal Mass Ejections (CME) S. K. Antiochos,
Review: Recent Observations on Wave Heating S. Kamio Kwasan and Hida Observatories Kyoto University.
Flare footpoints in optical and UV Lyndsay Fletcher University of Glasgow RHESSI 10, August 4 th 2010, Annapolis TRACE WL ~2s time cadence, 0.5” pixel.
RHESSI Working Group 4 Program – Taos workshop
TRACE Downflows and Energy Release
Downflows and Plasmoid Ejections as a Reconnection Outflow
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
Chromospheric and Transition Region Dynamics
Flare Ribbon Expansion and Energy Release
-Short Talk- The soft X-ray characteristics of solar flares, both with and without associated CMEs Kay H.R.M., Harra L.K., Matthews S.A., Culhane J.L.,
Downflow as a Reconnection Outflow
Presentation transcript:

Coronal HXR sources a multi-wavelength perspective

Why use multi-wavelength? Plasma properties of HXR-emitting volume Relationship to other sources Relationship to overall flare configuration / evolution Diagnostics available: Line ratios  temperature, density (at line formation temperature) Filter ratios  temperature Emission measures  density (for assumed/measured vol.) Line widths/shifts  bulk and ‘non-thermal’ speeds

20-30 keV keV keV GOES & RHESSI One example (Bone et al. 2005) of an occulted flare GOES emission measure and RHESSI ‘volume’ provide an estimate of coronal source density. in this event gives n ~ cm -3

Warren & Reeves 2001 Temperature diagnostic formed with TRACE 195/171 channels (uses Fe XXIV in 195, and cont. bremsstrahlung in 171) Red areas consistent with T>20MK, low FIP elements 5x photosphere. (CHIANTI v3) Phillips et al RHESSI 6-12keV co- spatial with hot TRACE loops. TRACE filter ratio

Timing analysis Aschwanden & Alexander 2001 analysis of loop emission in Bastille Day 2000 flare Emission integrated over whole FOV of each instrument All curves show are predominantly arcade emission. Calculate contribution function for each instrument – determine primary temperature of each filter Cooling initially by conduction (t<200s) then radiation

Berlicki et al – Fe XIX (8MK) ~ co- spatial with RHESSI coronal source. - both are hot….. No published examples of CDS density or temperature line-ratio diagnostics of flares. (co-ordinated observations are rare, also diagnostic ratios compromised post-1998 SOHO recovery) CDS observations – few and far-between

CDS velocity measurements a few velocity measurements available for footpoint sources in both impulsive and decay phase of flares. ‘Typically’ – downflow ~ 10s of km/s in ‘chromospheric’ lines upflows ~ 100km/s in lines at 2-6MK (Brosius 03) What about flare coronal measurements? Milligan et al 06 – possibly high T blue- shifted emission in a coronal loop? v ~ km/s

UVCS Ciaravella et al 2002 narrow feature in UVCS slit 2.55 R  n e ~ 6  10 7 cm -3 Non-thermal line-width < 60km/s Lin et al 2005 Ly  – ion density (assuming neutrals coupled to p +  dense coronal regions move inwards to less-dense region Interpreted as plasma inflows ~ km/s

Extended coronal HXR source appears early on, before high energy footpoints and 4min before TRACE 195 channel emission. Gallagher et al 2002 suggest coronal energy release directly heats plasma to > 20MK, then it cools down. April – RHESSI’s first X-class event

SUMER observations April event – Innes, McKenzie & Wang 2003 Vertical white line = SUMER slit position Observations in CII, FeXII, Fe XXI Contribution functions  pretty good temperature coverage Also, UV continuum emission gives info on bremsstrahlung

Voids are dark in all 3 emission lines observed. Continuum emission implies low EM in voids (rather than absorption by dense cold gas) Conclusion – voids are empty. Also at Doppler shifts to blue, up to 1000km/s in FeXXI, observed at time that ‘voids’ reach same location

Voids & HXRs in 23-Jul-02 Asai et al 2004 Not such a clear example BUT downflows seen also in impulsive and main phase. Evolution of TRACE 195A intensity along slit, as function of time (reverse colour) Claim: times of void ‘descent’ corresponds to peaks seen in RHESSI/NoRH (Also seen in work with SXT/HXT by Khan et al. 2006) keV

Relationship to H  loops – erupting case Veronig et al 2006 High T emission above low T H  loops at lower altitudes than HXR source / EUV / SXR loops line centrered wing line centre red wing H  loop density ~ cm -3 RHESSI (early), n ~ cm -3 RHESSI/GOES (late) n ~ cm -3

HXR-H  failed eruption Ji et al 2003 – high cadence H  blue wing observations Filament does not escape, returns to surface. HXRs/EUV emission close to location where filament ‘ruptures’ HH EUV 12-25keV RHESSI

White-light coronal source Hudson et al 2006, Fletcher et al 2006 observe a coronal source in TRACE white-light and 1700Å, and RHESSI 25-50keV. Also see work of Leibacher et al. using broad-band ground-based WL. This kind of source (exceeding photospheric surface brightness) may imply a very high coronal density. WL emission mechanism unclear.