Synapses Figure 11.17.

Slides:



Advertisements
Similar presentations
Synaptic Cleft: Information Transfer
Advertisements

What about communication between neurons?.  presynaptic ending – ◦ portion of the axon conveying information to the next neuron.
Chapter 12, part 3 Neural tissue.
SYNAPSES AND NEURONAL INTEGRATION
Neurophysiology.
Neurons The Structure of Neurons The synapse
Neurotransmitters A. Criteria
A connection that mediates information transfer from one neuron:
sensory receptor sensory input integration motor input effector.
Synapse and Neurotransmitter Dr. Shaikh Mujeeb Ahmed Assistant prof. Physiology Al Maarefa College 1 Lecture slides are prepared by Dr.Mohammed Sharique.
Two types of signal conduction within a single neuron
Questions 17-1 Q: What happens to a nerve impulse once it reaches the end of an axon? Q: How does one neuron communicate with another?
Communication Within the Nervous System
Fundamentals of the Nervous System and Nervous Tissue
Electricity Definitions
Nervous System: Part III What Happens at a Synapse?
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 11 Fundamentals of the.
Lecture Presentation by Lee Ann Frederick University of Texas at Arlington Chapter 12 Neural Tissue © 2015 Pearson Education, Inc. Capítulo 12 Tejido Nervioso.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Nervous System  The master controlling and communicating system of the body.
Human Physiology The Nervous System Neurons and Synapses Chapter 4.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Fiber Classification  Nerve fibers are classified according to:  Diameter.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Functional Human Physiology for the Exercise and Sport Sciences Synaptic Transmission and Neural Integration Jennifer L. Doherty, MS, ATC Department of.
Fundamentals of the Nervous System and Nervous Tissue: Part C.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 11 Fundamentals of the.
Nervous Tissue A. Nervous system divisions B. Functional anatomy of nervous tissue B. Functional anatomy of nervous tissue 1. Neuroglia 1. Neuroglia a.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
The Nervous System Neuron –Cell body; Dendrites; Axon Three general groups of neurons –Sensory neurons (afferent or receptor) Receive the initial stimulus.
FUNDAMENTALS OF THE NERVOUS SYSTEM & NERVOUS TISSUE
© 2013 Pearson Education, Inc. Figure Synapses. Axodendritic synapses Dendrites Cell body Axoaxonal synapses Axon Axosomatic synapses Axon Axosomatic.
Copyright © 2010 Pearson Education, Inc. The Synapse A junction that mediates information transfer from one neuron: To another neuron, or To an effector.
Physiology of synapses, interneuronal connections
Action Potential: Resting State Leakage accounts for small movements of Na + and K + Each Na + channel has two voltage-regulated gates.
Neural Tissue: 2.
Human Anatomy & Physiology Ninth Edition PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson.
Neurons: Cellular and Network Properties
Nervous system works because information flows from neuron to neuron
Read page on drugs and the brain What 3 major concepts should we study to understand this article further?
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Action potential travels along an axon Information passes from presynaptic neuron.
Neurons, Synapses, and Signaling
Nerve Fiber Classification
Neurophysiology II: The Synapse Synapse Defined Space between adjacent neurons! Relays information from one neuron to another! Neuron  Neuron Neuron.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings  A junction that mediates information transfer from one neuron:  To another.
AP Biology Nervous Systems Part 3.  I. Synapses – These are the gaps between neurons or between neuron and effector cells.  A. There are two types of.
Cell to cell communication in the nervous system The synapse Electrical synapse Chemical synapse Role of calcium “neurocrines” Receptors Post-synaptic.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 11 Fundamentals of the.
11-3.
Postsynaptic Potentials Neurotransmitter receptors mediate changes in membrane potential according to: – The _ – The amount of ______________________ the.
Fundamentals of the Nervous System, Chap 11 Part 2
Chapter 11: Nervous Tissue. The Nervous System The master controlling and communicating system of the body Functions: – Sensory input – monitoring stimuli.
Fundamentals of the Nervous System and Nervous Tissue: Part C
The Synapse and Synaptic Transmission
What is a neurotransmitter?
What is the neural basis of behavior?
Comparative Vertebrate Physiology
Neurotransmitters.
Chapter 7 The Nervous System
Communication Within the Nervous System
At resting potential Most voltage-gated Na+ and K+ channels are closed, but some K+ channels (not voltage-gated) are open.
12-7 Synapses Synaptic Activity Action potentials (nerve impulses)
11 Fundamentals of the Nervous System and Nervous Tissue: Part C.
Fundamentals of the Nervous System and Nervous Tissue: Part C
A junction that mediates information transfer from one neuron:
Fundamentals of the Nervous System and Nervous Tissue: Part C
Chapter 11 The Nervous System (Part B)
Neurotransmission Across a Synapse
© 2017 Pearson Education, Inc.
Cell to cell communication in the nervous system
Presentation transcript:

Synapses Figure 11.17

Fluid-filled space separating the presynaptic and postsynaptic neurons Synaptic Cleft Fluid-filled space separating the presynaptic and postsynaptic neurons Prevents nerve impulses from directly passing from one neuron to the next Transmission across the synaptic cleft: Is a chemical event (as opposed to an electrical one) Ensures unidirectional communication between neurons

Synaptic Cleft: Information Transfer Neurotransmitter Ca2+ Na+ Axon terminal of presynaptic neuron Action potential Receptor 1 Postsynaptic membrane Mitochondrion Postsynaptic membrane Axon of presynaptic neuron Ion channel open Synaptic vesicles containing neurotransmitter molecules 5 Degraded neurotransmitter 2 Synaptic cleft 3 4 Ion channel closed Ion channel (closed) Ion channel (open) Figure 11.18

Synaptic Cleft: Information Transfer Ca2+ Axon terminal of presynaptic neuron Action potential 1 Axon of presynaptic neuron Figure 11.18

Synaptic Cleft: Information Transfer Ca2+ Axon terminal of presynaptic neuron Action potential 1 Mitochondrion Axon of presynaptic neuron Synaptic vesicles containing neurotransmitter molecules 2 Figure 11.18

Synaptic Cleft: Information Transfer Ca2+ Axon terminal of presynaptic neuron Action potential 1 Postsynaptic membrane Mitochondrion Axon of presynaptic neuron Synaptic vesicles containing neurotransmitter molecules 2 Synaptic cleft 3 Ion channel (closed) Ion channel (open) Figure 11.18

Synaptic Cleft: Information Transfer Neurotransmitter Ca2+ Na+ Axon terminal of presynaptic neuron Action potential Receptor 1 Postsynaptic membrane Mitochondrion Postsynaptic membrane Axon of presynaptic neuron Ion channel open Synaptic vesicles containing neurotransmitter molecules 2 Synaptic cleft 3 4 Ion channel (closed) Ion channel (open) Figure 11.18

Synaptic Cleft: Information Transfer Neurotransmitter Ca2+ Na+ Axon terminal of presynaptic neuron Action potential Receptor 1 Postsynaptic membrane Mitochondrion Postsynaptic membrane Axon of presynaptic neuron Ion channel open Synaptic vesicles containing neurotransmitter molecules 5 Degraded neurotransmitter 2 Synaptic cleft 3 4 Ion channel closed Ion channel (closed) Ion channel (open) Figure 11.18

Synaptic Delay Neurotransmitter must be released, diffuse across the synapse, and bind to receptors Synaptic delay – time needed to do this (0.3-5.0 ms) Synaptic delay is the rate-limiting step of neural transmission

Postsynaptic Potentials The two types of postsynaptic potentials are: EPSP – excitatory postsynaptic potentials IPSP – inhibitory postsynaptic potentials

Excitatory Postsynaptic Potential (EPSP) Open Na+ channels Figure 11.19a

Inhibitory Postsynaptic (IPSP) Open K+ and Cl- channels Figure 11.19b

Summation A single EPSP cannot induce an action potential Temporal summation Spatial summation Figure 11.20

Chemical Neurotransmitters 50 different neurotransmitters Acetylcholine (ACh) Biogenic amines Amino acids Peptides Novel messengers: ATP and dissolved gases NO and CO

Neurotransmitters: Acetylcholine Degraded by the enzyme acetylcholinesterase (AChE) Released by: All neurons that stimulate skeletal muscle Some neurons in the autonomic nervous system Tetanus – bacterial toxin

Neurotransmitters: Biogenic Amines Catecholamines – dopamine, norepinephrine (NE), and epinephrine Indolamines – serotonin and histamine emotional behaviors

Neurotransmitters: Amino Acids Include: GABA – Gamma ()-aminobutyric acid Glycine Aspartate Glutamate Found only in the CNS

Neurotransmitters: Peptides Include: Substance P – mediator of pain signals Beta endorphin, dynorphin, and enkephalins Act as natural opiates; reduce pain perception Bind to the same receptors as opiates and morphine Gut-brain peptides – somatostatin, and cholecystokinin

Neurotransmitters: Novel Messengers ATP Is found in both the CNS and PNS Produces excitatory or inhibitory responses depending on receptor type Induces Ca2+ wave propagation in astrocytes Provokes pain sensation

Neurotransmitters: Novel Messengers Nitric oxide (NO) Activates the intracellular receptor guanylyl cyclase Is involved in learning and memory Carbon monoxide (CO) is a main regulator of cGMP in the brain

Functional Classification of Neurotransmitters Two classifications: excitatory and inhibitory Excitatory neurotransmitters cause depolarizations (e.g., glutamate) Inhibitory neurotransmitters cause hyperpolarizations (e.g., GABA and glycine)

Functional Classification of Neurotransmitters Some neurotransmitters have both excitatory and inhibitory effects Determined by the receptor type of the postsynaptic neuron Example: acetylcholine Excitatory at neuromuscular junctions with skeletal muscle Inhibitory in cardiac muscle

Neurotransmitter Receptor Mechanisms Direct: neurotransmitters that open ion channels Promote rapid responses Examples: ACh