Probing the X-ray Universe: Analysis of faint sources with XMM-Newton G. Hasinger, X. Barcons, J. Bergeron, H. Brunner, A. C. Fabian, A. Finoguenov, H.

Slides:



Advertisements
Similar presentations
ACTIVE GALACTIC NUCLEI X-ray broad--band study A. De Rosa, L. Piro Ginga/ROSAT/ASCA IASF-Roma Universita' di Roma La Sapienza Institute of.
Advertisements

The evolution of SMBH from Hard X-ray surveys Andrea Comastri (INAF – Osservatorio di Bologna – Italy) The XRB as a tracer of SMBH mass density Hard X-ray.
A Large Catalogue of Ultraluminous X-ray Source Candidates in Nearby Galaxies Madrid: 2010 DOM WALTON IoA, Cambridge, UK In collaboration with Jeanette.
The Search for Type 2 Quasars Julian Krolik with: Reina Reyes, Michael Strauss, Ezequiel Treister, Nadia Zakamska.
A reflection origin for the soft and hard X-ray excess of Ark 120 Ferrara, 2010 May in collaboration with: Andy Fabian, Rubens Reis, Dom Walton (Institute.
Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching.
Soft X-ray line reflection in NLS1 galaxies Th. Boller, A. Müller, A. Ibarra MPE Garching Excellence Cluster Universe Munich XMM SOC, Villa Franca, Spain.
COSPAR Workshop, Udaipur 2003 Active Galactic Nuclei : I Keith Arnaud NASA Goddard University of Maryland.
COSMOS Kyoto meeting May 2005 Obscured AGN in the COSMOS field Andrea Comastri (INAF – Bologna) on behalf of the XMM-COSMOS team.
X. Barcons, XEUS SAGXEUS: Physics of the hot evolving Universe XEUS: The Physics of the hot Evolving Universe Xavier Barcons.
Extragalatic Surveys, Cambridge MA, Nov 6-8, 2006 Vincenzo Mainieri G. Hasinger, N. Cappelluti, M. Brusa, F. Civano, A. Comastri, M. Elvis, A. Finoguenov,
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
The fraction of obscured quasars Junxian Wang Center for Astrophysics University of Science and Technology of China Xi’an, China Collaborated with.
I. Balestra, P.T., S. Ettori, P. Rosati, S. Borgani, V. Mainieri, M. Viola, C. Norman Galaxies and Structures through Cosmic Times - Venice, March 2006.
Boston, November 2006 Extragalactic X-ray surveys Paolo Tozzi Spectral analysis of X-ray sources in the CDFS.
“false-color” keV X-ray image of the Bootes field A large population of mid-infrared selected, obscured AGN in the Bootes field Ryan C. Hickox Harvard-Smithsonian.
Early Results from SWIFT's BAT AGN Survey: XMM Follow-up Observations for 22 BAT AGNs Lisa Winter Lisa Winter (Grad Student at UMD) Richard Mushotzky (GSFC),
Obscured and unobscured growth of Super-massive Black Holes Francisco J. Carrera, X. Barcons, J. Bussons, J. Ebrero, M. Ceballos, A. Corral (IFCA, CSIC-UC,
The XMM-Newton hard band wide angle Survey Nicoletta Carangelo and Silvano Molendi (IASF-MI(CNR)) Epic Consortium Meeting Palazzo Steri, Palermo,
Obscured AGN and the synthesis of the cosmic X-ray background
1 The Fundamental Plane Relationship of Astrophysical Black Holes Ran Wang Supervisor: Xuebing Wu Peking University Ran Wang Supervisor: Xuebing Wu Peking.
Conclusions We established the characteristics of the Fe K line emission in these sources. In 7 observations, we did not detect the source significantly.
The variable X-ray spectrum of PDS456 and High-Velocity Outflows Shai Kaspi Technion – Haifa; Tel-Aviv University Israel & Ehud Behar, James Reeves “ The.
Thomas Boller One of the open questions which still requires further investigations is the detection of dramatic spectral drops above 7 keV in Narrow-Line.
Obscured AGN and XRB models Andrea Comastri (INAF-OABologna-Italy) Roberto Gilli (INAF-OABologna-Italy) F. Fiore (INAF-OARoma-Italy) G. Hasinger (MPE-Garching-
A multi-colour survey of NGC253 with XMM-Newton Robin Barnard, Lindsey Shaw Greening & Ulrich Kolb The Open University.
The nature of X-ray selected Broad Absorption Line Quasars Alex Blustin With Tom Dwelly (Southampton), Mat Page (UCL-MSSL)‏ UCL-MSSL and IoA, Cambridge.
AGN: Testing general relativity (Fe Kα line) and high resolution plasma diagnostics (Warm Absorber) Delphine Porquet MPE, Garching, Germany.
The Evolution of AGN Obscuration
Extreme soft X-ray emission from the broad-line quasar REJ R.L.C. Starling 1*, E.M. Puchnarewicz 1, K.O. Mason 1 & E. Romero- Colmenero 2 1 Mullard.
1 A. Streblyanska, G. Hasinger, A. Finoguenov, X. Barcons, S. Mateos, A. C. Fabian A relativistic Fe line in the mean X-ray spectra of type-1 and type-2.
The Evolution of AGN Obscuration
Revealing X-ray obscured Quasars in SWIRE sources with extreme MIR/O Giorgio Lanzuisi Fabrizio Fiore Enrico Piconcelli Chiara Feruglio Cristian Vignali.
The X-ray view of absorbed INTEGRAL AGN
X-ray emission properties of BLAGN in the XMM-2dF Wide Angle Survey S. Mateos, M.G. Watson, J. A. Tedds and the XMM-Newton Survey Science Centre Department.
The X-ray mirrors Giovanni Miniutti Institute of Astronomy, University of Cambridge SIMBOL-X May -Bologna.
Strong Gravity Effects: X-ray spectra, timing and polarimetry AC Fabian IoA Cambridge UK With help from Giovanni Miniutti, Josefin Larsson, Jamie Crummy,
Lockman Hole (XMM PV) PN CCD (MPE Garching) MOS1 CCD (Leicester U) PN CCD (MPE Garching) MOS1 CCD (Leicester U) PV Observations ksec.
Compton-thick AGN in the CDFN I. Georgantopoulos NOA A. Akylas NOA A. Georgakakis NOA M. Rovilos MPE M. Rowan-Robinson Imperial College.
The NuSTAR Extragalactic Survey: A 1 st Look at the Distant High-Energy X-ray Background D.R. Ballantyne (Georgia Tech) on behalf of M. Ajello, D. Alexander,
HST Workshop Bologna Jan 31, 2008 Heavily obscured SMBH at high redshift Andrea Comastri INAF - OABologna C. Vignali, R. Gilli, K. Iwasawa, F. Civano,
X-ray spectroscopy of bright AGN GiorgioMatt & Stefano Bianchi Giorgio Matt & Stefano Bianchi (Dipartimento di Fisica, Università Roma Tre) (Dipartimento.
Deep Chandra image in the Boötes Field Junxian Wang Johns Hopkins University.
START. The population of high-redshift type-2 quasars found in deep Chandra and XMM-Newton surveys The Formation and Early Evolution of Galaxies, Irsee.
Observations of Obscured Black Holes
Obscured and unobscured growth of Super-massive Black Holes from the XMM-Newton Medium Survey Francisco J. Carrera, X. Barcons, J. Bussons, J. Ebrero,
Origin of the Seemingly Broad Iron- Line Spectral Feature in Seyfert Galaxies Ken EBISAWA (JAXA/ISAS) with H. INOUE, T. MIYAKAWA, N. ISO, H. SAMESHIMA,
Andrii Elyiv and XMM-LSS collaboration The correlation function analysis of AGN in the XMM-LSS survey.
Metal abundance evolution in distant galaxy clusters observed by XMM-Newton Alessandro Baldi Astronomy Dept. - University of Bologna INAF - OABO In collaboration.
Finding Black Hole Systems in Nearby Galaxies With Simbol-X Paul Gorenstein Harvard-Smithsonian Center for Astrophysics.
I. Georgantopoulos NATIONAL OBSERVATORY OF ATHENS A. Georgakakis, O. Giannakis, S. Kitsionas, A. Akylas, D. Gaga, M. Plionis, V. Kolokotronis, S. Basilakos.
Ezequiel Treister Advisors: Meg Urry (Yale) José Maza (U. de Chile)
A deep view of the iron line and spectral variability in NGC 4051 James Reeves Collaborators:- Jane Turner, Lance Miller, Andrew Lobban, Valentina Braito,
Broad iron lines from accretion disks K. Iwasawa University of Cambridge.
Multiwavelength AGN Number Counts in the GOODS fields Ezequiel Treister (Yale/U. de Chile) Meg Urry (Yale) And the GOODS AGN Team.
X-RAY PROPERTIES OF FR II/NLRG X-RAY PROPERTIES OF FR II/NLRG E. Trussoni 1, A. Capetti 1, B. Balmaverde 2 1 INAF – Osservatorio Astronomico di Torino,
New XMM-Newton deep Survey in the Lockman Hole Vincenzo Mainieri MPE Workshop on AGN Surveys, Puebla, June 23- July 11, 2003 Guenther Hasinger Hans Boehringer.
Why is the BAT survey for AGN Important? All previous AGN surveys were biased- –Most AGN are ‘obscured’ in the UV/optical –IR properties show wide scatter.
ULIRGs: IR-Optical-X-ray properties ULIRGs: IR-Optical-X-ray properties Valentina Braito.
Average Fe Kα emission from distant AGN
The unusual X-ray spectrum of MCG
The X-ray Universe Granada
X-ray Surveys Lockman Hole Team Giacconi (JHU) Gunn (Princeton)
The Space Density of Compton Thick AGN
Andrea Comastri (INAF- Oss. Astr. Bologna)
Hard X-ray observations of Extremely Red Objects
The spectral properties of Galactic X-ray sources at faint fluxes
Black Holes in the Deepest Extragalactic X-ray Surveys
A.Malizia, L. Bassani , M. Molina
Black Hole Winds: the case of PDS 456
Presentation transcript:

Probing the X-ray Universe: Analysis of faint sources with XMM-Newton G. Hasinger, X. Barcons, J. Bergeron, H. Brunner, A. C. Fabian, A. Finoguenov, H. Brunner, A. C. Fabian, A. Finoguenov, V. Mainieri, S. Mateos V. Mainieri, S. Mateos

CDFS: XMM PN+MOS RA 3:32:28 and DEC -27:48:30 (J2000). The exposure time for good quality observation added up to ~ 370 ksec (XMM) 1Ms Chandra dataset (Giacconi et al. 2002) The EPIC instruments have unprecedent high sensitivity in the hard X-ray band, and in the [5-10] keV band our dataset is comparable to the 1Ms Chandra image.

The total number of sources with spectral or photometric redshift is 343/347 (only 4 X-ray sources non identified!!!). The final sample is 321 (Chandra, Tozzi et al. 2005) or 123 sources (XMM-Newton, Streblyanska et al. 2005).

Chandra: 346 sources XMM: 324 sources (> 3 σ) 168 overlap (within 6”) +15 (< 3 σ) + 10 double in Chandra = 193 sources detected in both surveys The average distance 2-3” 145 sources detected in XMM only (some within the Chandra image!).

Comparison between Chandra and XMM: Fluxes

From optical identifications we know that the dominant population in both surveys is a mixture of obscured (type-2) and unobscured (type-1) AGNs, with a small fraction of groups/clusters of galaxies. The fraction of obscurated objects increase at lower flux.

Soft excess in the distant type-2 QSOs A class of highly luminous type-2 AGN (QSO-2), at first has been detected in the deepest radio survey (Norman et al. 2002, Stern et al. 2002, Lehmann et al. 2002). In our field, at z>2.5, there are seven type-2 QSOs, but only one is possible to analyse as individual spectrum. All these objects have narrow L y-α and CIV emission, HR > -0.2, and faint optical magnitudes R ≥ 24.0

Soft excess in the distant type-2 QSOs

Stacking spectrum of the most distant type-2 QSOs Our integrated spectrum shows an absorption with clear soft excess, which we fit by scattering model. z int =3.081 Γ = 2.14±0.13 N H =9 ×10 23 cm -2 Covering fraction 0.96±0.2

The next step after investigating the individual spectra was to group the faint objects by source classification and combine their spectra in order to determine general spectral properties for each type of object. A relativistic Fe line in the mean X-ray spectra of type-1 and type-2 AGNs. (A. Streblyanska, G. Hasinger, A. Finoguenov, X. Barcons, S. Mateos and A. C. Fabian. 2005, A&A 432, 395) The rest frame spectra in deep fields.

Approaching the Black Hole ASCA relativistic Fe-line (Tanaka et al. 1995) A diversity in line shapes have been recently reported, as relativistic iron lines have been discovered in some objects with ASCA (Tanaka et al. 1995) and confirmed with XMM-Newton (Wilms et al. 2001, Fabian et al. 2002). The Fe line background. (Brusa et al. 2005)

Lockman Hole: XMM pn+MOS1/2 RA 10:52:43 and DEC +57:28:48 (J2000) The remaining exposure times after cleaning are approximately ksec (pn-MOS1- MOS2) The deepest XMM observation, a large total solid angle, an extensive optical identification of AGN population. 53 type-1 AGN 41 type-2 AGN

Spectral analysis Each individual spectrum was fit with a single power law model Both the ratio of the data to the model as well as a reconstructed unfolded spectrum was saved. An average spectrum was created with a bin width of 0.25 keV for energies lower than 8 keV and a bin width 2 keV above. Each spectrum was shifted to the rest frame: ●For the ratio we increase the energies by the factor of (1+z). ●For the unfolded spectra we used the same energy band to renormalize the spectra to the same value for further averaging and increase the energies by the factor of (1+z).

type-1 AGN type-2 AGN The ratio from the stacked unfolded spectrum (power law model) The resulting ratio plots from mean unfolded spectra obtained by using averaging methods. The unfolded spectra are fit with a power-law model in the ranges and 8-20 keV. EW = 560±100 eV EW = 455±40 eV

wabs * wabs(po + linemodel) N H = 5.7 × cm -2 (fixed) Photon index = 1.74±0.2 and 1.6±0.2 N H = 8±1 × cm -2 NH = 5.2±0.9 × cm -2 Model Energy, keV EW, eV βR in (R g )R out (R g )i (deg)χ 2 /DOF laor 6.4 * 560±100 3*3*3*3*3.1± ± /67 diskline 6.4 * 480±60 2*2*2*2*6.4±1.222±429± /67 Gaussian5.9±0.2420± /68 * fixedModel Energy, keV EW, eV βR in (R g )R out (R g )i (deg)χ 2 /DOF laor 6.4 * 455±35 3*3*3*3*6.2± ± /63 diskline 6.4 * 320±25 2*2*2*2* ±40029± /63 Gaussian6.34± ± /64 Type-2 AGN: Unfolded spectra Type-1 AGN: Unfolded spectra

An additional reason why our large equivalent width may be connected with a large metallicity is that most of our objects are quite distant and rather luminous AGNs. Shemmer et al. (2004) The metallicity is correlated with the accretion rate, which is in turn related to the luminosity. distant and luminous AGN -> high metallicity -> the large equivalent widths Discussion Discussion The large EW as the result of a high metallicity(?) One of the explanations for the large EWs can be given by a model including ionized disc reflection with lines and edges from different ionization stages of iron blurred together by relativistic effects (Fabian et al. 2002b). This model can account for all the observed spectral features, but yields a large iron overabundance of 3-7 × solar as an explanation of the observation (Tanaka et al. 2004, Boller et al. 2003). In our case we need an iron abundance of 3 × solar (as needed for MCG ) in order to obtain a high EW.

Conclusion  We derive an average rest-frame spectrum of AGN type one and two. The most prominent feature in the averaged spectrum is a presence of the fluorescent Fe line.  The average rest-frame spectrum of the XRB sources shows a strong, relativistic iron line, possibly due to a high metallicity in the average population.  The strong red wing of the line feature indicates some component of spin in the average black hole.  A very broad line feature is expected in the average X- ray background spectra (Fabian et al. 2000, Gilli et al. 2001), which should be included in future population synthesis models for the X-ray background.

LH 53 type-1 AGN 41 type-2 AGN CDFS 78 type-1 AGN 35 type-2 AGN + Future work: Equivalent widths as a function of z, flux, luminosity and etc.