Modeling of Particle and Power Control for Compact Stellarators Update Arthur Grossman UCSD 2/24/2005.

Slides:



Advertisements
Similar presentations
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Advertisements

Lunar Results Hybrid code. Initial condition Amplitude of dipole for the moon= 0 Lunar Radius=16.9 (unit of length) Maximum time = 200(inverse of gyro.
Physics of fusion power Lecture 6: Conserved quantities / Mirror device / tokamak.
Update on Modeling of Power and Particle Control for ARIES- Compact Stellarator A.Grossman UCSD 11/04/2004 Acknowledgements: P.Mioduszewski(ORNL) J. Lyon.
Progress in Configuration Development for Compact Stellarator Reactors Long-Poe Ku Princeton Plasma Physics Laboratory Aries Project Meeting, June 16-17,
Physics of fusion power
Code Integration for Efficient Divertor Design H. McGuinness D. Steiner ARIES project meeting UCSD, Nov Nuclear Engineering Rensselaer Polytechnic.
Physics of fusion power Lecture 8: Conserved quantities / mirror / tokamak.
Physics of fusion power
Assessment of Quasi-Helically Symmetric Configurations as Candidate for Compact Stellarator Reactors Long-Poe Ku Princeton Plasma Physics Laboratory Aries.
GOURDON/GEOM Parallelization Progress and Outlook Hayden McGuinness Don Steiner Rensselaer Polytechnic Institute In collaboration with T.K. Mau and A.
Power Loads and Divertor Design Hayden McGuinness Don Steiner Rensselaer Polytechnic Institute In collaboration with T.K. Mau and A. Grossman.
AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS T.K. Mau, A. Grossman, A.R. Raffray UC-San Diego H. McGuinness RPI ARIES-CS Project Meeting June 14-15, 2005 University.
Princeton Plasma Physics Laboratory
IPP Stellarator Reactor perspective T. Andreeva, C.D. Beidler, E. Harmeyer, F. Herrnegger, Yu. Igitkhanov J. Kisslinger, H. Wobig O U T L I N E Helias.
Physics of fusion power Lecture 8 : The tokamak continued.
Recent Progress in Configuration Development for Compact Stellarator Reactors Long-Poe Ku PPPL Aries Project Meeting, December 3, 2003 Princeton Plasma.
AN UPDATE on DIVERTOR DESIGN and HEAT LOAD ANALYSIS T.K. Mau (UCSD) H. McGuinness (RPI), D. Steiner (RPI) A.R. Raffray (UCSD), X. Wang (UCSD), A. Grossman.
Physics of Fusion power Lecture 7: Stellarator / Tokamak.
托卡马克的平衡计算 李国强 四室学术报告. Introduction Decompose the physics problem by the orders (time order and space order) Traditional decomposition of plasma.
1 ST workshop 2008 Conception of LHCD Experiments on the Spherical Tokamak Globus-M O.N. Shcherbinin, V.V. Dyachenko, M.A. Irzak, S.A. Khitrov A.F.Ioffe.
TITLE RP1.019 : Eliminating islands in high-pressure free- boundary stellarator magnetohydrodynamic equilibrium solutions. S.R.Hudson, D.A.Monticello,
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
D. McCune 1 Plasma State Representation XPLASMA – Tool for Representation of Equilibrium, Fields and Profiles Available at:
pkm- NCSX CDR, 5/21-23/ Power and Particle Handling in NCSX Peter Mioduszewski 1 for the NCSX Boundary Group: for the NCSX Boundary Group: M. Fenstermacher.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
14 th IEA-RFP Workshop, Padova 26 th -28 th April 2010 The SHEq code: an equilibrium calculation tool for SHAx states Emilio Martines, Barbara Momo Consorzio.
The toroidal current is consistent with numerical estimates of bootstrap current The measured magnetic diagnostic signals match predictions of V3FIT Comparisons.
12/03/2013, Praga 1 Plasma MHD Activity Observations via Magnetics Diagnostics: Magnetic island Analysis Magnetic island Analysis Frederik Ostyn (UGent)
Physics of fusion power Lecture 10: tokamak – continued.
Interplay between magnetic topology, density fluctuations and confinement in high-  Wendelstein 7-AS plasmas Nils P. Basse 1 Association EURATOM – Risø.
TITLE Presented by Stuart R. Hudson for the NCSX design team Suppression of Magnetic Islands In Stellarator equilibrium calculations By iterating the plasma.
Maingi p.1 Supported by Office of Science The Edge Physics Program During Initial Operation in NCSX Rajesh Maingi Oak Ridge National Laboratory For the.
Chapter 27. A uniformly charged rod has a finite length L. The rod is symmetric under rotations about the axis and under reflection in any plane containing.
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
Physics of fusion power Lecture 9 : The tokamak continued.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
QSH/SHAx states: towards the determination of an helical equilibrium L. Marrelli acknowledging fruitful discussions with S.Cappello, T.Bolzonella, D.Bonfiglio,
1 Modular Coil Design for the Ultra-Low Aspect Ratio Quasi-Axially Symmetric Stellarator MHH2 L. P. Ku and the ARIES Team Princeton Plasma Physics Laboratory.
The Electric Field The electric field is present in any region of space if there exists electric forces on charges. These electric forces can be detected.
Plasma-wall interactions during high density operation in LHD
Divergence and Curl of Electrostatic Fields Field of a point charge arrowsfield lines:
Gauss’s Law AP Physics C. How to use Gauss’s Law Count the lines leaving a surface as + Count the lines entering a surface as – Figures and

SI leader: Rosalie Dubberke
TITLE Stuart R.Hudson, D.A.Monticello, A.H.Reiman, D.J.Strickler, S.P.Hirshman, L-P. Ku, E.Lazarus, A.Brooks, M.C.Zarnstorff, A.H.Boozer, G-Y. Fu and G.H.Neilson.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
ASIPP Magnetic Diagnostics of HT-7U Tokamak Shen Biao Wan Baonian Institute of Plasma Physics, CAS P.O.Box 1126, Hefei, Anhui , P.R.China (e_mail:
1 PFC requirements  Basic requirements  Carbon based  Provisions for adding (interface design included in research prep budget)  NBI armor  Trim coil.
Development of A New Class of QA Stellarator Reactor Configurations Long-Poe Ku PPPL Aries Project Meeting, March 8-9, 2004 University of California, San.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
1 Recent Progress on QPS D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson, A. S. Ware, D. E. Williamson Improved coil design (see recent.
Presented by Yuji NAKAMURA at US-Japan JIFT Workshop “Theory-Based Modeling and Integrated Simulation of Burning Plasmas” and 21COE Workshop “Plasma Theory”
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
48th Annual Meeting of the Division of Plasma Physics, October 30 – November 3, 2006, Philadelphia, Pennsylvania Energetic-Electron-Driven Alfvénic Modes.
Mechanisms for losses during Edge Localised modes (ELMs)
Fundamentals of Applied Electromagnetics
Stellarator Divertor Design and Optimization with NCSX Examples
15TH WORKSHOP ON MHD STABILITY CONTROL
Energy in a capacitor is stored
Electromagnetic Theory
Finite difference code for 3D edge modelling
Application of SIESTA to Island Formation in HSX
Calculate Area with grid lines no grid lines. Calculate Area with grid lines no grid lines.
The Electric Field The electric field is present in any region of space if there exists electric forces on charges. These electric forces can be detected.
Calculate Area with grid lines no grid lines. Calculate Area with grid lines no grid lines.
Two-Plate Waveguide
Magnetic Field produced by current
Chapter 32 Problems 6,7,9,16,29,30,31,37.
Presentation transcript:

Modeling of Particle and Power Control for Compact Stellarators Update Arthur Grossman UCSD 2/24/2005

LCMS Agreement Achieved VMEC LCMS MFBE DOMAIN

VMEC Parameters Used VACUUM FIELD PARAMETERS: nr-grid nz-grid np-grid rmin rmax zmin zmax input-file mgrid.m50kzd_r8.25b6.5 FREE BOUNDARY EQUILIBRIUM COMPUTATION PARAMETERS: (u = theta, v = zeta) ns nu nv mu mv Radial surfaces = 47 Poloidal grid points = 15 Toroidal grid points = 30 Poloidal modes = 11 Toroidal modes = 6 CONFIGURATION PARAMETERS: nfp gamma spres_ped phiedge(wb) curtor(A) E E E E+06

VMEC Output for iota from s=0 to 1 S d(VOL)/ d(PRES)/ PRESF FORCE> FLUX (X mu0) (X mu0) d(PHI) d(PHI) E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+01 Iota increases from (at s=0) to (s=1)

Iota results from field line tracing INSIDE the VMEC LCMS Startpunkte der Feldlinien: r0mi= m r0ma= m ir0= 10 z0mi= m phi0g= 0.00 hpasz= npper= 120 ntour= 200 nlin= feldlinie nr. 1 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 2 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 3 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 4 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 5 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 6 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 7 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 8 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 9 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 10 lss= jota/periode= jota/umfang= sxmn= E+01 Iota increases monotonically from 0.34 (magnetic axis) to 0.65 at LCMS

Iota results from field line tracing OUTSIDE the VMEC LCMS Startpunkte der Feldlinien: r0mi= m r0ma= m ir0= 10 z0mi= m phi0g= 0.00 hpasz= npper= 120 ntour= 200 nlin= feldlinie nr. 1 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 2 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 3 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 4 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 5 lss= 8509 jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 6 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 7 lss= jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 8 lss= 3838 jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 9 lss= 2603 jota/periode= jota/umfang= sxmn= E+01 feldlinie nr. 10 lss= 2023 jota/periode= jota/umfang= sxmn= E+01 Iota decreases from 0.63 when the LCMS is crossed, forming the 3/5 island chain at iota =0.60 and then decreases to for starting point 10cm from LCMS

Relation of lss to Ergodicity npper = number of toroidal cross sections per period ntour = number of toroidal turns of the field line np = number of periods lss=npper*ntour*np+1 Example maximum lss for the specified 200 turns: lss=120*200*3+1=72001 Maximum of lss points per field line. If lss is smaller than the maximum number, the field line is ergodic and has left the box of the magnetic field.

Starting Point at LCMS Starting Point at MA 3/5 Island chain at iota=0.6

Field Lines Started On Surfaces Inside LCMS Field Line Started On Island Ergodic Field Lines Field Lines Started Just Outside LCMS are Surface- Like

Island Divertor Concept Particle and power flow around periphery of islands Plates located at cross-sections where island width is maximized.

Conclusions Problems with the non-agreement between MFBE and VMEC LCMS’s were resolved. A large increase in the number of processors and toroidal planes was found not to be necessary for good agreement in LCMS’s. Iotas from MFBE field line traces and VMEC output are consistent. A 3/5 Island structure outside the LCMS consistent with iota=0.6 is clearly seen. The maximum width of these islands was obtained at the bullet shaped cross-section.