Graph Theory Graph theory is the study of the properties of graph structures. It provides us with a language with which to talk about graphs.

Slides:



Advertisements
Similar presentations
CSE 211 Discrete Mathematics
Advertisements

Instructor Neelima Gupta Table of Contents Approximation Algorithms.
A Better Algorithm for Finding Planar Subgraph Gruia Călinescu Cristina G. Fernandes Ulrich Finkler Howard Karloff.
Introduction to Graph Theory Instructor: Dr. Chaudhary Department of Computer Science Millersville University Reading Assignment Chapter 1.
The swap edges of a multiple source routing tree * 樹德資工 † 台大資工 Bang Ye Wu* Chih-Yuan Hsiao † Kun-Mao Chao †
1 Fair Cost-Sharing Method for the Minimum Spanning Tree Game 邱冠凱 胡啟政 劉宗灝 文國煒.
1 Discrete Structures & Algorithms Graphs and Trees: II EECE 320.
Minimum Spanning Trees. 2 有權重的圖 * 很多圖形演算法的問題都假設其輸入為有權重 的圖形. * 這裡我們假設權重都定在邊上面, 且權重值都 為正, 例如請參考上圖所顯示的圖形. a b c d e f gh G=(V,E)
: Road Construction ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 10724: Road Construction 解題者:徐文宏 解題日期: 2011 年 4 月 20 日 題意:給一個座標圖 (-1000~1000)
Graph Algorithms: Minimum Spanning Tree We are given a weighted, undirected graph G = (V, E), with weight function w:
Graph V(G 1 )={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} E(G 1 )={(0, 2), (0, 3), (1, 4), (2, 3), (2, 5), (2, 6), (3, 6), (3, 7), (4, 7), (5, 6), (5,
Modern Information Retrieval 第三組 陳國富 王俊傑 夏希璿.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
: IIUC HexWorld ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11092: IIUC HexWorld 解題者:江秀桂 解題日期: 2007 年 3 月 6 日.
Johnson’s algorithm Johnson’s演算法可用於計算All pairs shortest path問題。
Approximation Algorithms for the Traveling Salesperson Problem.
指導教授:張玉盈 教授 學生:黃意涵、林宜融、許蕙茹
Chapter 10 m-way 搜尋樹與B-Tree
A Search Procedure for Hamilton Paths and Circuits Frank Rubin JACM, Vol. 21, No. 4, pp , Oct
1 523: Minimum Transport Cost ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 523: Minimum Transport Cost 解題者:林祺光 解題日期: 2006 年 6 月 12 日 題意:計算兩個城市之間最小的運輸成本,運輸.
Extreme Discrete Summation ★★★★☆ 題組: Contest Archive with Online Judge 題號: Extreme Discrete Summation 解題者:蔡宗翰 解題日期: 2008 年 10 月 13 日.
Graphs. Graph A “graph” is a collection of “nodes” that are connected to each other Graph Theory: This novel way of solving problems was invented by a.
: Problem E Antimatter Ray Clearcutting ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11008: Problem E Antimatter Ray Clearcutting 解題者:林王智瑞.
Design and Analysis of Algorithms Minimum Spanning trees
Course 7 貪婪法則 Greedy Approach
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
: Construct the wall maze ★★★★★ 題組: Problem Set Archive with Online Judge 題號: 11050: Construct the wall maze 解題者:宋柏儀 解題日期: 2007 年 6 月 12 日.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
Discrete Mathematics Lecture 9 Alexander Bukharovich New York University.
IS 2610: Data Structures Graph April 5, 2004.
Theory of Computing Lecture 10 MAS 714 Hartmut Klauck.
The Traveling Salesman Problem Approximation
University of Texas at Arlington Srikanth Vadada Kishan Kumar B P Fall CSE 5311 Solving Travelling Salesman Problem for Metric Graphs using MST.
Chapter 2 Graph Algorithms.
Graph Theory Chapter 7 Eulerian Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Structures 7 Decision Maths: Graph Theory, Networks and Algorithms.
7.1 and 7.2: Spanning Trees. A network is a graph that is connected –The network must be a sub-graph of the original graph (its edges must come from the.
Graph Theory Chapter 6 Matchings and Factorizations 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
CS 200 Algorithms and Data Structures
Introduction to Graph Theory
Graphs 1 Definition 2 Terminology 3 Properties 4 Internal representation Adjacency list Adjacency matrix 5 Exploration algorithms 6 Other algorithms.
Lecture19: Graph III Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
1 Approximation Algorithm Updated on 2012/12/25. 2 Approximation Algorithm Up to now, the best algorithm for solving an NP-complete problem requires exponential.
Chapter 14 Section 4 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Spring 2015 Mathematics in Management Science Network Problems Networks & Trees Minimum Networks Spanning Trees Minimum Spanning Trees.
1 Chapter 15 Graphs, Trees, and Networks. 2 Chap Undirected Graphs 15.2 Directed Graphs 15.3 Trees 15.4 Networks 15.5 Graph Algorithms
Graphs. Graphs Similar to the graphs you’ve known since the 5 th grade: line graphs, bar graphs, etc., but more general. Those mathematical graphs are.
Graph Theory Chapter 8 Hamiltonian Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Chapter 20: Graphs. Objectives In this chapter, you will: – Learn about graphs – Become familiar with the basic terminology of graph theory – Discover.
Graph Revisited Fei Chen CSCI2100B Data Structures Tutorial 12 1.
1) Find and label the degree of each vertex in the graph.
Graphs Definition: a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected.
Empirical Study on Finding Minimal Spanning Tree S. J. Shyu 4/29/2012.
Chapter 14 Section 3 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Grade 11 AP Mathematics Graph Theory Definition: A graph, G, is a set of vertices v(G) = {v 1, v 2, v 3, …, v n } and edges e(G) = {v i v j where 1 ≤ i,
Activity Networks AOV 網路 AOE 網路. AOV 網路 (Activity on Vertx Networks)  為了表示一件工作中,各子工程間的先後 關係,我們可以利用有向圖中的有向邊代 表事情進行的順序,位於一條有向邊終點 的事件必須要等待起點的事情完成後,才 可以進行。
Minimum Spanning Trees
Minimum Spanning Tree Chapter 13.6.
Graph Algorithm.
Minimum Spanning Trees
Connected Components Minimum Spanning Tree
Graph Algorithm.
Introduction to Graph Theory Euler and Hamilton Paths and Circuits
Graphs Chapter 13.
Genome Assembly.
Shortest Paths and Minimum Spanning Trees
Weighted Graphs & Shortest Paths
Graph Algorithm.
Presentation transcript:

Graph Theory Graph theory is the study of the properties of graph structures. It provides us with a language with which to talk about graphs.

Degree The degree of a vertex is the number of edges incident upon it. The sum of the vertex degrees in any undirected graph is even (twice the number of edges). Every graph contains an even number of odd-degree vertices.

Connectivity A graph is connected if there is an undirected path between every pair of vertices. The existence of a spanning tree is sufficient to prove connectivity. The vertex (edge) connectivity is the smallest number of vertices (edges) which must be deleted to disconnect the graph.

Some terms articulation vertex  biconnected bridge  edge-biconnected Testing for articulation vertices or bridges is easy via brute force.

Cycles Eulerian cycle (path): a tour which visits every edge of the graph exactly once. Actually, it is a circuit, not a cycle, because it may visit vertices more than once. A mailman’s route is ideally an Eulerian cycle, so he can visit every street (edge) in the neighborhood once before returning home.

An undirected graph contains an Eulerian cycle if it is connected and every vertex is of even degree. A Hamiltonian cycle is a tour which visits every vertex of the graph exactly once. The traveling salesman problem asks for the shortest such tour on a weighted graph.

Planer Graph Euler’s formula: n-m+f=2 n:# of vertices m:# of edges f: # of faces Trees: m=n-1, f=1 Cubes: n=8, m=12, f=6

MST Kruskal’s algorithm: starting from a minimal edge Prim’s algorithm: starting from a given vertex –How about maximum spanning tree –and Minimum Product spanning tree

Kruskal’s Algorithm Algorithm Kruskal(G) Input : G=(V, E) 為無向加權圖 (undirected weighted graph) , 其中 V={v 0,…,v n-1 } Output : G 的最小含括樹 (minimum spanning tree, MST) T←  //T 為 MST ,一開始設為空集合 while T 包含少於 n-1 個邊 do 選出邊 (u, v) ,其中 (u, v)  E ,且 (u, v) 的加權 (weight) 最小 E←E-(u, v) if ( (u, v) 加入 T 中形成循環 (cycle) ) then 將 (u, v) 丟棄 else T←T  (u, v) return T

Kruskal’s Algorithm -Construct MST

Prim’s algorithm Algorithm Prim(G) Input : G=(V, E) 為無向加權圖 (undirected weighted graph) ,其 中 V={v 0,…,v n-1 } Output : G 的最小含括樹 (minimum spanning tree, MST) T←  //T 為 MST ,一開始設為空集合 X←{v x } // 隨意選擇一個頂點 v x 加入集合 X 中 while T 包含少於 n-1 個邊 do 選出 (u, v)  E ,其中 u  X 且 v  V-X ,且 (u, v) 的加權 (weight) 最小 T←T  (u, v) X←X  {v} return T

One-to-all shorted path Dijkstra 演算法 : Dijkstra 演算法屬於求取單一來源 (source) 至所有目 標 (destination) 頂點的一至多 (one-to-all) 最短路徑演算法

All-pair shortest path Floyd-Warshall 的所有頂點對最短路徑 (all-pair shortest path) 演 算法: