Local Data-driven MHD Simulations of Active Regions W.P. Abbett MURI 8210 Workshop Mar 2004.

Slides:



Advertisements
Similar presentations
SPD June 16, 2003 Separators: Fault Lines in the Magnetic Field Dana Longcope Montana State University.
Advertisements

Energy and Helicity Budget of Four Solar Flares and Associated Magnetic Clouds. Maria D. Kazachenko, Richard C. Canfield, Dana Longcope, Jiong Qiu Montana.
Colorado Research Associates Division, NorthWest Research Associates Magnetic Charge Topology (MCT) Analysis of NOAA AR8210 Graham Barnes NWRA/CoRA K.D.
14 Feb 2006C4: Coronal Energy Inputs I. Mapping Free Energy in the Solar Atmosphere What can we learn from HMI & AIA? Brian Welsch, Space Sciences Lab,
Inductive Flow Estimation for HMI Brian Welsch, Dave Bercik, and George Fisher, SSL UC-Berkeley.
Can We Determine Electric Fields and Poynting Fluxes from Vector Magnetograms and Doppler Shifts? by George Fisher, Brian Welsch, and Bill Abbett Space.
Shin Toriumi & Takaaki Yokoyama Department of Earth and Planetary Science, University of Tokyo FEW 2011: 22 Aug 2011.
Simulation of Flux Emergence from the Convection Zone Fang Fang 1, Ward Manchester IV 1, William Abbett 2 and Bart van der Holst 1 1 Department of Atmospheric,
Chip Manchester 1, Fang Fang 1, Bart van der Holst 1, Bill Abbett 2 (1)University of Michigan (2)University of California Berkeley Study of Flux Emergence:
Extrapolation vs. MHD modeling Hardi Peter Kiepenheuer-Institut Freiburg, Germany Contribution to the discussions at the SDO workshop / Monterey Feb 2006.
SHINE Campaign Event: 1-2 May 1998 Brian Welsch (& Yan Li) Space Sciences Laboratory, UC Berkeley Introduction: Data, Context, etc. Work: Completed & Ongoing.
Using Photospheric Flows Estimated from Vector Magnetogram Sequences to Drive MHD Simulations B.T. Welsch, G.H. Fisher, W.P. Abbett, D.J. Bercik, Space.
Simulations of Emerging Magnetic Flux in Active Regions W. P. Abbett Space Sciences Laboratory University of California, Berkeley.
Update: Incorporating Vector Magnetograms into Dynamic Models of the Solar Atmosphere CISM-AG Meeting: March 2006 Bill Abbett, Brian Welsch, George Fisher.
UCB-SSL Plans for Next Year Joint CCHM/CWMM Workshop, July 2007 W.P. Abbett, G.H. Fisher, and B.T. Welsch.
Dec. 10, 2004RHESSI/SOHO/TRACE The Minimum Energy Fit Consistent with Induction at Minimum Possible Cost Dana Longcope Montana State University Work supported.
M3 Session AIA/HMI Science Meeting D-1 : M3-Magnetic Field Data Products Data Product Development Session Chairs: R. Larsen/Y. Liu Status: [draft]
MSU Team: R. C. Canfield, D. W. Longcope, P. C. H. Martens, S. Régnier Evolution on the photosphere: magnetic and velocity fields 3D coronal magnetic fields.
1 SDO/HMI Products From Vector Magnetograms Yang Liu – Stanford University
Estimating Electric Fields from Vector Magnetogram Sequences G. H. Fisher, B. T. Welsch, W. P. Abbett, D. J. Bercik University of California, Berkeley.
Coupled Models for the Emergence of Magnetic Flux into the Solar Corona W. P. Abbett UC Berkeley SSL G. H. Fisher, Y. Fan, S. A. Ledvina, Y. Li, and D.
Understanding Magnetic Eruptions on the Sun and their Interplanetary Consequences A Solar and Heliospheric Research grant funded by the DoD MURI program.
Modeling Active Region Magnetic Fields on the Sun W.P. Abbett Space Sciences Laboratory University of California, Berkeley.
Magnetic Field Extrapolations And Current Sheets B. T. Welsch, 1 I. De Moortel, 2 and J. M. McTiernan 1 1 Space Sciences Lab, UC Berkeley 2 School of Mathematics.
Free Energies via Velocity Estimates B.T. Welsch & G.H. Fisher, Space Sciences Lab, UC Berkeley.
Incorporating Vector Magnetic Field Measurements into MHD models of the Solar Atmosphere W.P. Abbett Space Sciences Laboratory, UC Berkeley and B.T. Welsch,
Determining flows from magnetic field evolution An outline of the approach we’ve adopted at UCB (Welsch, Fisher, Abbett, Regnier)
Understanding Magnetic Eruptions on the Sun and their Interplanetary Consequences A Solar and Heliospheric Research grant funded by the DoD MURI program.
Inductive Local Correlation Tracking or, Getting from One Magnetogram to the Next Goal (MURI grant): Realistically simulate coronal magnetic field in eruptive.
UCB-SSL Progress Report for the Joint CCHM/CWMM Workshop W.P. Abbett, G.H. Fisher, and B.T. Welsch.
Magnetic Helicity Generation Inside the Sun
Understanding the Connection Between Magnetic Fields in the Solar Interior and the Solar Corona George H. Fisher Space Sciences Laboratory UC Berkeley.
Finding Photospheric Flows with I+LCT or,“Everything you always wanted to know about velocity at the photosphere, but were afraid to ask.” B. T. Welsch,
Dec. 2, 2008 Bangalore, India Active region emergence and its effect on the solar corona Dana Longcope Montana State University, Bozeman, MT Isaac Klapper.
Center for Space Environment Modeling Ward Manchester University of Michigan Yuhong Fan High Altitude Observatory SHINE July.
Summary of workshop on AR May One of the MURI candidate active regions selected for detailed study and modeling.
The Dynamic Evolution of Quiet Sun Magnetic Fields in the Solar Atmosphere W.P. Abbett, Space Sciences Laboratory, Univ. of California, Berkeley
SSL (UC Berkeley): Prospective Codes to Transfer to the CCMC Developers: W.P. Abbett, D.J. Bercik, G.H. Fisher, B.T. Welsch, and Y. Fan (HAO/NCAR)
Incorporating Magnetogram Data into Time-Dependent Coronal Field Models By George Fisher, Bill Abbett, Dave Bercik, Jim McTiernan, and Brian Welsch Space.
Understanding Magnetic Eruptions on the Sun and their Interplanetary Consequences A Solar and Heliospheric Research grant funded by the DoD MURI program.
Observations of December 2006 events Yang Liu – Stanford University
Flows in NOAA AR 8210: An overview of MURI progress to thru Feb.’04 Modelers prescribe fields and flows (B, v) to drive eruptions in MHD simulations MURI.
M1-H2: Magnetic Activity Science Goals and Approaches DRAFT! Chair(s): Abbett/Hoeksema/Komm.
Surface Flows From Magnetograms Brian Welsch, George Fisher, Bill Abbett, & Yan Li Space Sciences Laboratory, UC-Berkeley Marc DeRosa Lockheed-Martin Advanced.
Flows and the Photospheric Magnetic Field Dynamics at Interior – Corona Interface Brian Welsch, George Fisher, Yan Li, & the UCB/SSL MURI & CISM Teams.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Data-Driven Simulations of AR8210 W.P. Abbett Space Sciences Laboratory, UC Berkeley SHINE Workshop 2004.
Understanding the Connection Between Magnetic Fields in the Solar Interior and Magnetic Activity in the Corona W.P. Abbett and G.H. Fisher, B.T. Welsch,
Using Photospheric Flows Estimated from Vector Magnetogram Sequences to Drive MHD Simulations B.T. Welsch, G.H. Fisher, W.P. Abbett, D.J. Bercik, Space.
Surface Flows From Magnetograms Brian Welsch, George Fisher, Bill Abbett, & Yan Li Space Sciences Laboratory, UC-Berkeley M.K. Georgoulis Applied Physics.
The Effect of Sub-surface Fields on the Dynamic Evolution of a Model Corona Goals :  To predict the onset of a CME based upon reliable measurements of.
Active Region Flux Transport Observational Techniques, Results, & Implications B. T. Welsch G. H. Fisher
1 A New Technique for Deriving Electric Fields from Sequences of Vector Magnetograms George H. Fisher Brian T. Welsch William P. Abbett David J. Bercik.
B. T. Welsch Space Sciences Lab, Univ. of California, Berkeley, CA J. M. McTiernan Space Sciences.
Using Simulations to Test Methods for Measuring Photospheric Velocity Fields W. P. Abbett, B. T. Welsch, & G. H. Fisher W. P. Abbett, B. T. Welsch, & G.
Finding the Flow Field Need flow information! –ideal evolution of coronal B(x,y,z,t) determined entirely by B(x,y,z,0) and v(x,y,0) – get v wrong and get.
UCB MURI Team Introduction An overview of ongoing work to understand a well observed, eruptive active region, along with closely related studies…..
2002 May 1MURI VMG mini-workshop1` Solar MURI Vector Magnetogram Mini-Workshop Using Vector Magnetograms in Theoretical Models: Plan of Action.
Modeling Emerging Magnetic Flux W.P. Abbett, G.H. Fisher & Y. Fan.
Summary of UCB MURI workshop on vector magnetograms Have picked 2 observed events for targeted study and modeling: AR8210 (May 1, 1998), and AR8038 (May.
Data-Driven MHD Modeling of CME Events
Magnetic configurations responsible for the coronal heating and the solar wind Hwanhee Lee 1, Tetsuya Magara 1 1 School of Space research, Kyung Hee University.
LINE OF SIGHT MAGNETIC FIELD EVOLUTION & DATA ANALYSIS Dandan Ye.
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
By: Kiana and Meagan. Purpose  To measure solar magnetic fields  To understand how energy generated by magnetic-field changes in the lower solar atmosphere.
3D simulations of solar emerging flux ISOBE Hiroaki Plasma seminar 2004/04/28.
WG1-1: Sub-surface Structure and Evolution Motivation: A research program on space weather that ignores the sub-photospheric evolution of magnetic fields.
WG1 – Sub-surface magnetic connections
From the Convection Zone to the Heliosphere
Observations of December 2006 events
Presentation transcript:

Local Data-driven MHD Simulations of Active Regions W.P. Abbett MURI 8210 Workshop Mar 2004

Primary Challenges of Data-driven modeling: ► Determining electric fields and flows consistent with the observed evolution of the magnetic field at the photosphere (Welsch, Fisher, Longcope, Demoulin) ► Generating initial atmospheres consistent with X-ray observations of the corona (McTiernan, Liu, Regnier, Lunquist) ► Developing a physically-consistent means of incorporating newly emerging flux from a separate system into fully magnetized atmospheres (Abbett, Mikic, Linker, Fisher) ► Developing standard techniques of testing and validating the new methods (Abbett, Magara, Fisher, Welsch, Bercik)