An Elementary Construction of Constant-Degree Expanders Noga Alon *, Oded Schwartz * and Asaf Shapira ** *Tel-Aviv University, Israel **Microsoft Research,

Slides:



Advertisements
Similar presentations
Randomness Conductors Expander Graphs Randomness Extractors Condensers Universal Hash Functions
Advertisements

The Weizmann Institute
Walk the Walk: On Pseudorandomness, Expansion, and Connectivity Omer Reingold Weizmann Institute Based on join works with Michael Capalbo, Kai-Min Chung,
Randomness Conductors (II) Expander Graphs Randomness Extractors Condensers Universal Hash Functions
The Primal-Dual Method: Steiner Forest TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A AA A A A AA A A.
Linear-Degree Extractors and the Inapproximability of Max Clique and Chromatic Number David Zuckerman University of Texas at Austin.
A Combinatorial Construction of Almost-Ramanujan Graphs Using the Zig-Zag product Avraham Ben-Aroya Avraham Ben-Aroya Amnon Ta-Shma Amnon Ta-Shma Tel-Aviv.
Weighted Matching-Algorithms, Hamiltonian Cycles and TSP
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Online Social Networks and Media. Graph partitioning The general problem – Input: a graph G=(V,E) edge (u,v) denotes similarity between u and v weighted.
The zigzag product, Expander graphs & Combinatorics vs. Algebra Avi Wigderson IAS & Hebrew University ’00 Reingold, Vadhan, W. ’01 Alon, Lubotzky, W. ’01.
Probabilistically Checkable Proofs Madhu Sudan MIT CSAIL 09/23/20091Probabilistic Checking of Proofs TexPoint fonts used in EMF. Read the TexPoint manual.
Artur Czumaj Dept of Computer Science & DIMAP University of Warwick Testing Expansion in Bounded Degree Graphs Joint work with Christian Sohler.
The PCP Theorem via gap amplification Irit Dinur Hebrew University.
1/17 Optimal Long Test with One Free Bit Nikhil Bansal (IBM) Subhash Khot (NYU)
10/11/2001Random walks and spectral segmentation1 CSE 291 Fall 2001 Marina Meila and Jianbo Shi: Learning Segmentation by Random Walks/A Random Walks View.
1 List Coloring and Euclidean Ramsey Theory TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A Noga Alon, Tel Aviv.
Symmetric Groups and Ramanujan Graphs Mike Krebs, Cal State LA (joint work with A. Shaheen)
(Omer Reingold, 2005) Speaker: Roii Werner TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A A A AA A.
Lower Bounds for NNS and Metric Expansion Rina Panigrahy Kunal Talwar Udi Wieder Microsoft Research SVC TexPoint fonts used in EMF. Read the TexPoint manual.
Proximity algorithms for nearly-doubling spaces Lee-Ad Gottlieb Robert Krauthgamer Weizmann Institute TexPoint fonts used in EMF. Read the TexPoint manual.
Constant Degree, Lossless Expanders Omer Reingold AT&T joint work with Michael Capalbo (IAS), Salil Vadhan (Harvard), and Avi Wigderson (Hebrew U., IAS)
Hard Metrics from Cayley Graphs Yuri Rabinovich Haifa University Joint work with Ilan Newman.
Undirected ST-Connectivity 2 DL Omer Reingold, STOC 2005: Presented by: Fenghui Zhang CPSC 637 – paper presentation.
EXPANDER GRAPHS Properties & Applications. Things to cover ! Definitions Properties Combinatorial, Spectral properties Constructions “Explicit” constructions.
Undirected ST-Connectivity in Log-Space By Omer Reingold (Weizmann Institute) Year 2004 Presented by Maor Mishkin.
For slideshow: click “Research and Talks” from slideshow: click “Research and Talks”
Message Passing for the Coloring Problem: Gallager Meets Alon and Kahale Sonny Ben-Shimon and Dan Vilenchik Tel Aviv University AofA June, 2007 TexPoint.
1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint work with Mira Gonen Dana Ron Tel-Aviv University.
1 Algorithmic Aspects in Property Testing of Dense Graphs Oded Goldreich – Weizmann Institute Dana Ron - Tel-Aviv University.
Zig-Zag Expanders Seminar in Theory and Algorithmic Research Sashka Davis UCSD, April 2005 “ Entropy Waves, the Zig-Zag Graph Product, and New Constant-
Expanders Eliyahu Kiperwasser. What is it? Expanders are graphs with no small cuts. The later gives several unique traits to such graph, such as: – High.
For slideshow: click “Research and Talks” from slideshow: click “Research and Talks”
Steiner trees Algorithms and Networks. Steiner Trees2 Today Steiner trees: what and why? NP-completeness Approximation algorithms Preprocessing.
Ramanujan Graphs of Every Degree Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)
Undirected ST-Connectivity In Log Space
Finding a maximum independent set in a sparse random graph Uriel Feige and Eran Ofek.
Undirected ST-Connectivity In Log Space Omer Reingold Slides by Sharon Bruckner.
For slideshow: click “Research and Talks” from slideshow: click “Research and Talks”
cover times, blanket times, and majorizing measures Jian Ding U. C. Berkeley James R. Lee University of Washington Yuval Peres Microsoft Research TexPoint.
1 Entropy Waves, The Zigzag Graph Product, and New Constant-Degree Expanders Omer Reingold Salil Vadhan Avi Wigderson Lecturer: Oded Levy.
Domain decomposition in parallel computing Ashok Srinivasan Florida State University COT 5410 – Spring 2004.
How to Compute and Prove Lower and Upper Bounds on the Communication Costs of Your Algorithm Part III: Graph analysis Oded Schwartz CS294, Lecture #10.
C&O 750 Randomized Algorithms Winter 2011 Lecture 24 Nicholas Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Distributed Coloring Discrete Mathematics and Algorithms Seminar Melih Onus November
An introduction to expander families and Ramanujan graphs
1 Universality, Tolerance, Chaos and Order Noga Alon, Tel Aviv University Szemerédi’s Conference Budapest, August 2010.
15-853:Algorithms in the Real World
1/19 Minimizing weighted completion time with precedence constraints Nikhil Bansal (IBM) Subhash Khot (NYU)
Expander graphs – a ubiquitous pseudorandom structure (applications & constructions) Avi Wigderson IAS, Princeton Monograph: [Hoory, Linial, W. 2006] “Expander.
Artur Czumaj DIMAP DIMAP (Centre for Discrete Maths and it Applications) Computer Science & Department of Computer Science University of Warwick Testing.
Hardness of Hyper-Graph Coloring Irit Dinur NEC Joint work with Oded Regev and Cliff Smyth.
Presented by Alon Levin
Expanders and Ramanujan Graphs Mike Krebs, Cal State LA For slideshow: click “Research and Talks” from
CSE 589 Applied Algorithms Spring 1999 Prim’s Algorithm for MST Load Balance Spanning Tree Hamiltonian Path.
Algorithms for Supercomputers Upper bounds: from sequential to parallel Oded Schwartz Seminar: Sunday, 12-2pm, B410 Workshop: Sunday, 2-5pm High performance.
1 Entropy Waves, The Zigzag Graph Product, and New Constant-Degree Expanders Omer Reingold Salil Vadhan Avi Wigderson Lecturer: Oded Levy.
Expanders and Ramanujan Graphs Mike Krebs, Cal State LA For slideshow: click “Research and Talks” from
Coding, Complexity and Sparsity workshop
From dense to sparse and back again: On testing graph properties (and some properties of Oded)
Reconstruction on trees and Phylogeny 1
Structural Properties of Low Threshold Rank Graphs
Complexity of Expander-Based Reasoning and the Power of Monotone Proofs Sam Buss (UCSD), Valentine Kabanets (SFU), Antonina Kolokolova.
CS 154, Lecture 6: Communication Complexity
K-wise vs almost K-wise permutations, and general group actions
On the effect of randomness on planted 3-coloring models
Undirected ST-Connectivity In Log Space
The Zig-Zag Product and Expansion Close to the Degree
Graphs G = (V, E) V are the vertices; E are the edges.
Explicit near-Ramanujan graphs of every degree
Presentation transcript:

An Elementary Construction of Constant-Degree Expanders Noga Alon *, Oded Schwartz * and Asaf Shapira ** *Tel-Aviv University, Israel **Microsoft Research, USA TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A SODA 2007

2 Expanders l Sparse l Highly connected [n,d,  ]- expander n vertices, d regular For every |S| ≤ n/2  d|S | ≤ |E(S,V \ S)|

3 Applications of Expanders l Robust networks l Derandomization l Error Correcting Codes l PCP l Hardness of approximations l …

4 Eigenvalues of Graphs G: [n, d,  ]- expander Adjacency matrix A: A i,j = #(i,j) edges Eigenvalues  1 ¸ 2 ¸ … ¸ n 1 = d, v 1 =1 n = max i  1 {| i |}

5 Expansion vs. Eigenvalues G : [n, d,  ]- expander  iff < d Thm: [Alon-Milman84, Dodziuk84, Alon86] (Actually 2 )

6 Existence [Pinsker73]: 9  > 0, s. t. 8 d ¸ 3 and (even) n, 9 [n, d,  ]- expander.

7 Constructions Explicit: Construct G »E.g, for reductions »Time = Poly(n) »or even Space = log n »Which n ’s? –8n.–8n. Fully Explicit: Find the i ’th neighbor of v »E.g, for derandomization »Time = Poly(|v|) = Poly(log n) »or even Space = loglog n »Which n ’s? –|G|=Poly(n) usually suffices.

8 Some Previous Results l [Margulis73], [Gabber-Galil81] Algorithm for Constant degree expanders. l …[Lubotzky-Phillips-Sarnak88], [Margulis88] Ramanujan Graphs. l [Alon-Roichman94] Polylog degree. l [Reingold-Vadhan-Wigderson02] Iterative construction.

9 Our Contribution Thm: 9  8 n : Explicit [Poly(n), O(1),  ]- expander »Simple to construct »Simple to analyze Applying the above we obtain: 1. Fully Explicit [Poly(n),O(1),  ]- expander 2. Explicit [n, O(1),  ]- expander

10 G2G2 Replacement Product: G 1 ® G 2 G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G1G1 For all v of G 1 : 1. Split 2. Install G 2 3. Duplicate edges

11 G 1 ® G 2 : Properties G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G1G1 G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]-expander

12 G 1 ® G 2 : Some History G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G1G1 G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]-expander [Gromov83] : Spectral Analysis [Reingold-Vadhan-Wigderson02] : via Zig-Zag [Papadimitriou-Yannakakis91] : for Inapprox. [Dinur05] : for PCP

13 G 1 ® G 2 : Expansion G 1 : [n, d 1, δ 1 ]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G1G1 Thm:G 1 ® G 2 is a [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander [here]: Simple combinatorial proof.

14 E 1 : [n, log 2 n, ¼ ]- expander [Special case of Alon-Roichman] E 2 : [log 2 n, (loglogn) 2, ¼ ]- expander [A&R again] E 3 : [2(loglog n) 2, 3,  ]- expander (Pinsker, exhaustive search) Return E = (E 1 ® E 2 ) ® E 3 New Construction (roughly) Constant Degree Expander Algorithm E: [Poly(n), 6,  ’ ]- expander Proof

15 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]- expander G 2 : [d 1, d 2, δ 2 ] -expander S V \ S G 1 ® G 2

16 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 ® G 2 : Combinatorial Proof G2G2 G1G1 G2G2 G 1 : [n, d 1, δ 1 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]- expander G 2 : [d 1, d 2, δ 2 ] -expander G2G2 X G2G2 ? G 1 ® G 2

17 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G1G1 G2G2 G2G2 X G2G2 ? + G2G2 G2G2 G2G2 G2G2 - - X G 1 ® G 2

18 A&R: Proof (a special case of [Alon-Roichman94]). 8 r, q=2 t, LD(q,r): Vertices: (a 0,…,a r )a i 2 F 2 t = [q] Edges: (x,y) 2 [q] 2 The (x,y) neighbor of (a 0,…,a r ) is: (a 0,…,a r )+y ¢ (1,x,x 2,…,x r ).

19 LD(q,r): Properties LD(q,r) : n = q r+1 vertices d = q 2 -regular Thm: [Alon-Roichman94]: (LD(q,r)) · rq For r = q/2  ¸ ½(1- / d) ¸ ¼ log 2 (n) ¸ (½q log q) 2 > q 2 = d LD(q,r) : [n, O(log 2 n), ¼]- expander.

20 LD(q,r): Eigenvalues M: n £ n matrix of LD(2 t,r) L : 2 t ! {0,1}L(x 0,…x t-1 )=x 0 Eigenvectors:

21 LD(q,r): Eigenvalues 1. v a are orthogonal 2. v a are eigenvectors (what eigenvalues?) + v a are all eigenvectors

22 LD(q,r): Eigenvalues 1. v a are orthogonal Proof: =  b v a (b) v a’ (b) W.l.o.g, a 0  a’ 0. All values

23 LD(q,r): Eigenvalues 2. v a are eigenvectors Proof: v a (b + c) = v a (b) v a (c) (M v a )(b) =  c 2 F r+1 M bc ¢ v a (c) =  x,y 2 F v a (b+y(1,x,...,x r )) = (  x,y 2 F v a (y,yx,...,yx r )) ¢ v a (b) The (x,y) neighbor of b a

24 LD(q,r): Eigenvalues 2. v a are eigenvectors! What are a ? a =  x,y 2 F v a ((y,yx,...,yx r )) p a (x) =  i r =0 a i x i

25 LD(q,r): Eigenvalues 2. v a are eigenvectors. What are a ? =1, 8 y= |F| = q all values = 0 a = (0,…0) ) a = q 2 a  (0,…0), ) p a has at most r roots ) a · rq

26 Variants »For every n »Fully explicit

27 For Every n LD(q,r) : n = q r+1 vertices d = q 2 -regular E 1 : [ q 2,3,  ]-expander Search E 2 : [ q 6,q 2,1/4 ]-expander LD(q,5) E 3 : [ q 4(r+1),q 8,1/4 ]-expander LD(q 4,r)q 4 /100≤ r ≤ q 4 /2 E 4 = E 3 ® ( E 2 ® E 1 ) E 4 : [q 4r+12,12,  ’]- expander

28 Poly(n) E 4 : [q 4r+12,12,  ’]- expander q 4 /100≤ r ≤ q 4 /2 q = 2 t n = q ^  (q 4 )  q 4 =  (lg n / lg lg n) t’ = t + 1  q’ = 2q, r’ = 16r n’ ≤ (2q) 4r’+12 = Poly(n) r’ = r - 1  n’ = n/ q 4 q 4(1/2 q^4)+12 > (2q) 4(16 q^4 /100) +12  n,n lglgn / lgn ≤ n 0 ≤ n

29  (n)  n,n lglgn / lgn ≤ n 0 ≤ n a = n / n 0 < lgn / lglgn if a < 100 – done. E 5 : [12a, 3,  ]- expander search : (lgn/lglgn)  (lg n / lglg n) = Poly(n) l Duplicate edges l E = E 4 ® E 5 E:[12n, 6,  ’’]- expander

30 Fully Explicit Vertex naming: (x,y) The i ’th neighbor of (x,y) »If i ≤ d 2 then (x, y’) : y’ is neighbor i in G 2 » else (x’, y): x’ is neighbor y in G 1 G2G2 G1G1 G 1 : [n, d 1, δ 1 ]- expander G 2 : [d 1, d 2, δ 2 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]- expander

31 Connection Scheme G 2 is d 2 - edge-colorable + G 1 ® G 2 is 2d 2 - edge-colorable. G 1 : [n, d 1, δ 1 ]- expander G 2 : [d 1, d 2, δ 2 ]- expander G2G2 G1G1 G 1 ® G 2 : [nd 1, 2d 2, δ(δ 1,δ 2 )]- expander Connection scheme? (rotation map) e.g : d 1 - edge-coloring for G 1.

32 Fully Explicit l G 1 ® G 2 »Fully Explicit »D-edge-colorable l Alon-Roichman: »Fully Explicit »D-edge-colorable l Pinsker »Fully Explicit »D-edge-colorable

33 A&R: Edge Colorability (a special case of [Alon-Roichman94]). 8 r, q=2 t, LD(q,r): Vertices: (a 0,…,a r )a i 2 F 2 t = [q] Edges: (x,y) 2 [q] 2 the (x,y) neighbor of (a 0,…,a r ): (a 0,…,a r )+y ¢ (1,x,x 2,…,x r ).

34 Conclusions and Open Problems l A (Fully) explicit constant degree expander »Simple to construct »Simple to analyze l Exploiting the simplicity? l Simple combinatorial proof »for [n, poly-log n, ¼ ]-expander? »for graph powering? »for (near) Ramanujan graphs?

35 Expanders Construction Thank You.

36 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 ® G 2 : Combinatorial Proof G2G2 G1G1 G2G2 G 1 : [n, d 1, δ 1 ]- expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]- expander G 2 : [d 1, d 2, δ 2 ] -expander

37 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander (1-  1 /4)d 1 Each contributes:  1 d 1 /4 ¢  2 d 2 If  ( small ) ¸  1 |S|/10 #sets ¸  1 |S|/10d 1 Total :  1 d 1 /4 ¢  2 d 2 ¢  1 |S|/10d 1 =  1 2  2 /80 ¢ 2d 2 ¢ |S| Else  small) <  1 |S|/10  ( Large ) ¸ (1-  1 /10) |S|

38 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander Else  small) <  1 |S|/10  ( Large ) ¸ (1-  1 /10) |S|

39 G 1 ® G 2 : Combinatorial Proof G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G1G1 G2G2

40 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 G 1 : Total ¸ ½  1 d 1 #large-sets G 1 ® G 2 : ½  1 d 1 d 2 #large-sets - corrections

41 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 At most: ¼  1 d 1 d 2 #large-sets

42 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander At most: d 2  ( small ) < d 2  1 |S| /10 ·  1 d 2 /10 ¢ #large-sets d 1 10/(10-  1 ) · 1/9  1 d 1 d 2 #large-sets G2G2 G2G2 G2G2 G2G2

43 G 1 ® G 2 : Combinatorial Proof G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander G2G2 G2G2 G2G2 G2G2 ¼  1 d 1 d 2 #large-sets ½  1 d 1 d 2 #large-sets - corrections 1/9  1 d 1 d 2 #large-sets

44 Compared to Random Walk G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G2G2 G1G1 G2G2 G 1 : [n, d 1, δ 1 ]-expander G 1 ® G 2 : [nd 1, 2d 2, δ 1 2 ¢ δ 2 /80)]-expander G 2 : [d 1, d 2, δ 2 ]-expander

45 [n,polylog n,  ]-expander (a special case of [Alon-Roichman94]). 8 r, q=2 t, LD(q,r): Vertices: (a 0,…,a r )a i 2 F 2 t = [q] Edges: (x,y) 2 [q] 2 the (x,y) neighbor of (a 0,…,a r ): (a 0,…,a r )+y ¢ (1,x,x 2,…,x r ).

46 LD(q,r): Properties LD(q,r): n = q r+1 vertices d = q 2 -regular q 2 - edge-colorable Thm: [Alon-Roichman94]: (LD(q,r)) · rq Recall ½(1- / d) ·  If r · q/2 then LD(q,r) is a [q r+1, q 2, ¼]- expander.