Www.bioalgorithms.infoAn Introduction to Bioinformatics Algorithms Dynamic Programming: Edit Distance.

Slides:



Advertisements
Similar presentations
Longest Common Subsequence
Advertisements

DYNAMIC PROGRAMMING ALGORITHMS VINAY ABHISHEK MANCHIRAJU.
Dynamic Programming Nithya Tarek. Dynamic Programming Dynamic programming solves problems by combining the solutions to sub problems. Paradigms: Divide.
Introduction to Bioinformatics Algorithms Divide & Conquer Algorithms.
Introduction to Bioinformatics Algorithms Divide & Conquer Algorithms.
Introduction to Bioinformatics Algorithms Divide & Conquer Algorithms.
Dynamic Programming: Sequence alignment
Overview What is Dynamic Programming? A Sequence of 4 Steps
Chapter 7 Dynamic Programming.
Outline The power of DNA Sequence Comparison The Change Problem
Inexact Matching of Strings General Problem –Input Strings S and T –Questions How distant is S from T? How similar is S to T? Solution Technique –Dynamic.
Refining Edits and Alignments Υλικό βασισμένο στο κεφάλαιο 12 του βιβλίου: Dan Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University.
Gene Prediction: Similarity-Based Approaches (selected from Jones/Pevzner lecture notes)
Chapter 7 Dynamic Programming 7.
§ 8 Dynamic Programming Fibonacci sequence
Dynamic Programming: Edit Distance
Introduction to Bioinformatics Algorithms Dynamic Programming: Edit Distance.
Dynamic Programming Reading Material: Chapter 7..
Longest Common Subsequence (LCS) Dr. Nancy Warter-Perez.
Sequence Alignment.
Introduction to Bioinformatics Algorithms Sequence Alignment.
Introduction to Bioinformatics Algorithms Block Alignment and the Four-Russians Speedup Presenter: Yung-Hsing Peng Date:
Longest Common Subsequence (LCS) Dr. Nancy Warter-Perez June 22, 2005.
Sequence Alignment Bioinformatics. Sequence Comparison Problem: Given two sequences S & T, are S and T similar? Need to establish some notion of similarity.
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez June 23, 2004.
Dynamic Programming1. 2 Outline and Reading Matrix Chain-Product (§5.3.1) The General Technique (§5.3.2) 0-1 Knapsack Problem (§5.3.3)
7 -1 Chapter 7 Dynamic Programming Fibonacci Sequence Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, … F i = i if i  1 F i = F i-1 + F i-2 if.
Pertemuan 23 : Penerapan Dinamik Programming (DP) Mata kuliah : K0164-Pemrograman vers 01.
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez May 20, 2003.
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology Bioinformatics Algorithms and Data Structures Chapter 11: Core String Edits.
© 2004 Goodrich, Tamassia Dynamic Programming1. © 2004 Goodrich, Tamassia Dynamic Programming2 Matrix Chain-Products (not in book) Dynamic Programming.
Introduction to Bioinformatics Algorithms Sequence Alignment.
Lecture 7 Topics Dynamic Programming
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez May 10, 2005.
Introduction to Bioinformatics Algorithms Multiple Alignment.
Class 2: Basic Sequence Alignment
1 Theory I Algorithm Design and Analysis (11 - Edit distance and approximate string matching) Prof. Dr. Th. Ottmann.
Dynamic Programming Introduction to Algorithms Dynamic Programming CSE 680 Prof. Roger Crawfis.
Introduction to Bioinformatics Algorithms Clustering and Microarray Analysis.
Dynamic Programming – Part 2 Introduction to Algorithms Dynamic Programming – Part 2 CSE 680 Prof. Roger Crawfis.
Dynamic Programming I Definition of Dynamic Programming
Sequence Alignment.
Pairwise alignments Introduction Introduction Why do alignments? Why do alignments? Definitions Definitions Scoring alignments Scoring alignments Alignment.
Space-Efficient Sequence Alignment Space-Efficient Sequence Alignment Bioinformatics 202 University of California, San Diego Lecture Notes No. 7 Dr. Pavel.
Introduction to Bioinformatics Algorithms Dynamic Programming: Edit Distance.
Chapter 9 – Graphs A graph G=(V,E) – vertices and edges
Pairwise Alignment, Part I Constructing the Values and Directions Tables from 2 related DNA (or Protein) Sequences.
Pairwise Sequence Alignment (I) (Lecture for CS498-CXZ Algorithms in Bioinformatics) Sept. 22, 2005 ChengXiang Zhai Department of Computer Science University.
Introduction to Bioinformatics Algorithms Sequence Alignment.
Dynamic Programming: Sequence alignment CS 466 Saurabh Sinha.
An Introduction to Bioinformatics 2. Comparing biological sequences: sequence alignment.
7 -1 Chapter 7 Dynamic Programming Fibonacci sequence Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, … F i = i if i  1 F i = F i-1 + F i-2 if.
Sequence Analysis CSC 487/687 Introduction to computing for Bioinformatics.
Dynamic Programming: Manhattan Tourist Problem Lecture 17.
Sequence Comparison Algorithms Ellen Walker Bioinformatics Hiram College.
Gene expression & Clustering. Determining gene function Sequence comparison tells us if a gene is similar to another gene, e.g., in a new species –Dynamic.
Dynamic Programming: Edit Distance
Introduction to Bioinformatics Algorithms Divide & Conquer Algorithms.
The Manhattan Tourist Problem Shane Wood 4/29/08 CS 329E.
Chapter 7 Dynamic Programming 7.1 Introduction 7.2 The Longest Common Subsequence Problem 7.3 Matrix Chain Multiplication 7.4 The dynamic Programming Paradigm.
Sequence Comparison I519 Introduction to Bioinformatics, Fall 2012.
TU/e Algorithms (2IL15) – Lecture 4 1 DYNAMIC PROGRAMMING II
Introduction to Bioinformatics Algorithms Dynamic Programming: Edit Distance.
Dynamic Programming for the Edit Distance Problem.
CSE 5290: Algorithms for Bioinformatics Fall 2011
Sequence Alignment Using Dynamic Programming
Sequence Alignment.
Dynamic Programming-- Longest Common Subsequence
Bioinformatics Algorithms and Data Structures
CSE 5290: Algorithms for Bioinformatics Fall 2009
Presentation transcript:

Introduction to Bioinformatics Algorithms Dynamic Programming: Edit Distance

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info The Change Problem Goal: Convert some amount of money M into given denominations, using the fewest possible number of coins Input: An amount of money M, and an array of d denominations c = (c 1, c 2, …, c d ), in a decreasing order of value (c 1 > c 2 > … > c d ) Output: A list of d integers i 1, i 2, …, i d such that c 1 i 1 + c 2 i 2 + … + c d i d = M and i 1 + i 2 + … + i d is minimal

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Change Problem: Example Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value? Value Min # of coins Only one coin is needed to make change for the values 1, 3, and 5

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Change Problem: Example (cont ’ d) Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value? Value Min # of coins However, two coins are needed to make change for the values 2, 4, 6, 8, and 10.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Change Problem: Example (cont ’ d) Value Min # of coins Lastly, three coins are needed to make change for the values 7 and 9 Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value?

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Change Problem: Recurrence This example is expressed by the following recurrence relation: minNumCoins(M) = minNumCoins(M-1) + 1 minNumCoins(M-3) + 1 minNumCoins(M-5) + 1 min of

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Change Problem: Recurrence (cont ’ d) Given the denominations c: c 1, c 2, …, c d, the recurrence relation is: minNumCoins(M) = minNumCoins(M-c 1 ) + 1 minNumCoins(M-c 2 ) + 1 … minNumCoins(M-c d ) + 1 min of

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Change Problem: A Recursive Algorithm 1.RecursiveChange(M,c,d) 2. if M = 0 3. return 0 4. bestNumCoins  infinity 5. for i  1 to d 6. if M ≥ c i 7. numCoins  RecursiveChange(M – c i, c, d) 8. if numCoins + 1 < bestNumCoins 9. bestNumCoins  numCoins return bestNumCoins

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info RecursiveChange Is Not Efficient It recalculates the optimal coin combination for a given amount of money repeatedly i.e., M = 77, c = (1,3,7): Optimal coin combo for 70 cents is computed 9 times!

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info The RecursiveChange Tree

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info We Can Do Better We’re re-computing values in our algorithm more than once Save results of each computation for 0 to M This way, we can do a reference call to find an already computed value, instead of re-computing each time Running time M*d, where M is the value of money and d is the number of denominations

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info The Change Problem: Dynamic Programming 1.DPChange(M,c,d) 2. bestNumCoins 0  0 3. for m  1 to M 4. bestNumCoins m  infinity 5. for i  1 to d 6. if m ≥ c i 7. if bestNumCoins m – c i + 1 < bestNumCoins m 8. bestNumCoins m  bestNumCoins m – c i return bestNumCoins M

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info DPChange: Example c = (1,3,7) M = 9

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Manhattan Tourist Problem (MTP) Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid Sink * * * * * * * ** * * Source *

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Manhattan Tourist Problem (MTP) Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid Sink * * * * * * * ** * * Source *

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Manhattan Tourist Problem: Formulation Goal: Find the longest path in a weighted grid. Input: A weighted grid G with two distinct vertices, one labeled “source” and the other labeled “sink” Output: A longest path in G from “source” to “sink”

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: An Example j coordinate i coordinate 13 source sink

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Greedy Algorithm Is Not Optimal promising start, but leads to bad choices! source sink 18 22

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Simple Recursive Program MT(n,m) if n=0 or m=0 return MT(n,m) x  MT(n-1,m)+ length of the edge from (n- 1,m) to (n,m) y  MT(n,m-1)+ length of the edge from (n,m-1) to (n,m) return max{x,y}

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Simple Recursive Program MT(n,m) x  MT(n-1,m)+ length of the edge from (n- 1,m) to (n,m) y  MT(n,m-1)+ length of the edge from (n,m-1) to (n,m) return min{x,y} What’s wrong with this approach?

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info i source 1 5 S 1,0 = 5 S 0,1 = 1 Calculate optimal path score for each vertex in the graph Each vertex’s score is the maximum of the prior vertices score plus the weight of the respective edge in between MTP: Dynamic Programming j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Dynamic Programming (cont ’ d) source S 2,0 = 8 i S 1,1 = 4 S 0,2 = j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Dynamic Programming (cont ’ d) i source S 3,0 = 8 S 2,1 = 9 S 1,2 = 13 S 3,0 = 8 j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Dynamic Programming (cont ’ d) greedy alg. fails! i source S 3,1 = 9 S 2,2 = 12 S 1,3 = 8 j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Dynamic Programming (cont ’ d) i source j S 3,2 = 9 S 2,3 = 15

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info MTP: Dynamic Programming (cont ’ d) i source j S 3,3 = 16 (showing all back-traces) Done!

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment: 2 row representation Alignment : 2 * k matrix ( k > m, n ) AT--GTAT ATCG A C letters of v letters of w T T ATCTGAT TGCATA v : w : m = 7 n = 6 4 matches2 insertions2 deletions Given 2 DNA sequences v and w:

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Aligning DNA Sequences V = ATCTGATG W = TGCATAC n = 8 m = 7 ATCTGATG TGCATAC V W match deletion insertion mismatch indels matches mismatches insertions deletions

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Longest Common Subsequence (LCS) – Alignment without Mismatches Given two sequences v = v 1 v 2 …v m and w = w 1 w 2 …w n The LCS of v and w is a sequence of positions in v : 1 < i 1 < i 2 < … < i t < m and a sequence of positions in w : 1 < j 1 < j 2 < … < j t < n such that i t -th letter of v equals to j t -letter of w and t is maximal

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info LCS: Example AT -- CTGATC TGCT A C elements of v elements of w -- A j coords: i coords: Matches shown in red positions in v: positions in w: 2 < 3 < 4 < 6 < 8 1 < 3 < 5 < 6 < 7 Every common subsequence is a path in 2-D grid 0 0 (0,0)  (1,0)  (2,1)  (2,2)  (3,3)  (3,4)  (4,5)  (5,5)  (6,6)  (7,6)  (8,7)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info LCS: Dynamic Programming Find the LCS of two strings Input: A weighted graph G with two distinct vertices, one labeled “source” one labeled “sink” Output: A longest path in G from “source” to “sink” Solve using an LCS edit graph with diagonals replaced with +1 edges

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info LCS Problem as Manhattan Tourist Problem T G C A T A C i ATCTGATC j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Graph for LCS Problem T G C A T A C i ATCTGATC j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Graph for LCS Problem T G C A T A C i ATCTGATC j Every path is a common subsequence. Every diagonal edge adds an extra element to common subsequence LCS Problem: Find a path with maximum number of diagonal edges

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Computing LCS Let v i = prefix of v of length i: v 1 … v i and w j = prefix of w of length j: w 1 … w j The length of LCS(v i,w j ) is computed by: s i, j = max s i-1, j s i, j-1 s i-1, j if v i = w j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Computing LCS (cont ’ d) s i,j = MAX s i-1,j + 0 s i,j s i-1,j , if v i = w j i,j i -1,j i,j -1 i -1,j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Every Path in the Grid Corresponds to an Alignment W ATCG A T G T V V = A T - G T | | | W= A T C G –

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Aligning Sequences without Insertions and Deletions: Hamming Distance Given two DNA sequences v and w : v : The Hamming distance: d H (v, w) = 8 is large but the sequences are very similar ATATATAT ATATATATw :w :

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Aligning Sequences with Insertions and Deletions v :ATATATAT ATATATATw :w :-- By shifting one sequence over one position: The edit distance: d H (v, w) = 2. Hamming distance neglects insertions and deletions in DNA

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance Levenshtein (1966) introduced edit distance between two strings as the minimum number of elementary operations (insertions, deletions, and substitutions) to transform one string into the other d(v,w) = MIN number of elementary operations to transform v  w

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance vs Hamming Distance V = ATATATAT W = TATATATA Hamming distance always compares i -th letter of v with i -th letter of w Hamming distance: d(v, w)=8 Computing Hamming distance is a trivial task.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance vs Hamming Distance V = ATATATAT W = TATATATA Hamming distance: Edit distance: d(v, w)=8 d(v, w)=2 Computing Hamming distance Computing edit distance is a trivial task is a non-trivial task W = TATATATA Just one shift Make it all line up V = - ATATATAT Hamming distance always compares i -th letter of v with i -th letter of w Edit distance may compare i -th letter of v with j -th letter of w

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance vs Hamming Distance V = ATATATAT W = TATATATA Hamming distance: Edit distance: d(v, w)=8 d(v, w)=2 (one insertion and one deletion) How to find what j goes with what i ??? W = TATATATA V = - ATATATAT Hamming distance always compares i -th letter of v with i -th letter of w Edit distance may compare i -th letter of v with j -th letter of w

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance: Example TGCATAT  ATCCGAT in 5 steps TGCATAT  (delete last T) TGCATA  (delete last A) TGCAT  (insert A at front) ATGCAT  (substitute C for 3 rd G) ATCCAT  (insert G before last A) ATCCGAT (Done)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance: Example TGCATAT  ATCCGAT in 5 steps TGCATAT  (delete last T) TGCATA  (delete last A) TGCAT  (insert A at front) ATGCAT  (substitute C for 3 rd G) ATCCAT  (insert G before last A) ATCCGAT (Done) What is the edit distance? 5?

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance: Example (cont ’ d) TGCATAT  ATCCGAT in 4 steps TGCATAT  (insert A at front) ATGCATAT  (delete 6 th T) ATGCATA  (substitute G for 5 th A) ATGCGTA  (substitute C for 3 rd G) ATCCGAT (Done)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Edit Distance: Example (cont ’ d) TGCATAT  ATCCGAT in 4 steps TGCATAT  (insert A at front) ATGCATAT  (delete 6 th T) ATGCATA  (substitute G for 5 th A) ATGCGTA  (substitute C for 3 rd G) ATCCGAT (Done) Can it be done in 3 steps???

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info The Alignment Grid Every alignment path is from source to sink

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment as a Path in the Edit Graph A T _ G T T A T _ A T _ G T T A T _ A T C G T _ A _ C A T C G T _ A _ C (0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7) - Corresponding path -

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignments in Edit Graph (cont’d) and represent indels in v and w with score 0. represent matches with score 1. The score of the alignment path is 5.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment as a Path in the Edit Graph Every path in the edit graph corresponds to an alignment:

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment as a Path in the Edit Graph Old Alignment v= AT_GTTAT_ w= ATCGT_A_C New Alignment v= AT_GTTAT_ w= ATCG_TA_C

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment as a Path in the Edit Graph v= AT_GTTAT_ w= ATCGT_A_C (0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment: Dynamic Programming s i,j = s i-1, j-1 +1 if v i = w j max s i-1, j s i, j-1

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Dynamic Programming Example Initialize 1 st row and 1 st column to be all zeroes. Or, to be more precise, initialize 0 th row and 0 th column to be all zeroes.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Dynamic Programming Example S i,j = S i-1, j-1 max S i-1, j S i, j-1  value from NW +1, if v i = w j  value from North (top)  value from West (left)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment: Backtracking Arrows show where the score originated from. if from the top if from the left if v i = w j

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Backtracking Example Find a match in row and column 2. i=2, j=2,5 is a match (T). j=2, i=4,5,7 is a match (T). Since v i = w j, s i,j = s i-1,j-1 +1 s 2,2 = [s 1,1 = 1] + 1 s 2,5 = [s 1,4 = 1] + 1 s 4,2 = [s 3,1 = 1] + 1 s 5,2 = [s 4,1 = 1] + 1 s 7,2 = [s 6,1 = 1] + 1

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Backtracking Example Continuing with the dynamic programming algorithm gives this result.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment: Dynamic Programming s i,j = s i-1, j-1 +1 if v i = w j max s i-1, j s i, j-1

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Alignment: Dynamic Programming s i,j = s i-1, j-1 +1 if v i = w j max s i-1, j +0 s i, j-1 +0 This recurrence corresponds to the Manhattan Tourist problem (three incoming edges into a vertex) with all horizontal and vertical edges weighted by zero.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info LCS Algorithm 1.LCS(v,w) 2. for i  1 to n 3. s i,0  0 4. for j  1 to m 5. s 0,j  0 6. for i  1 to n 7. for j  1 to m 8. s i-1,j 9. s i,j  max s i,j s i-1,j-1 + 1, if v i = w j 11. “ “ if s i,j = s i-1,j b i,j  “ “ if s i,j = s i,j-1 “ “ if s i,j = s i-1,j return (s n,m, b)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Now What? LCS(v,w) created the alignment grid Now we need a way to read the best alignment of v and w Follow the arrows backwards from sink

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Printing LCS: Backtracking 1.PrintLCS(b,v,i,j) 2. if i = 0 or j = 0 3. return 4. if b i,j = “ “ 5. PrintLCS(b,v,i-1,j-1) 6. print v i 7. else 8. if b i,j = “ “ 9. PrintLCS(b,v,i-1,j) 10. else 11. PrintLCS(b,v,i,j-1)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info LCS Runtime It takes O(nm) time to fill in the nxm dynamic programming matrix. Why O(nm)? The pseudocode consists of a nested “for” loop inside of another “for” loop to set up a nxm matrix.