Comparison of Somatic and Autonomic Systems

Slides:



Advertisements
Similar presentations
Chapter 14 - The Autonomic Nervous System
Advertisements

Human Anatomy & Physiology
The Autonomic Nervous System
Autonomic Nervous System (ANS) Lec 8 & 9. Differences between Somatic & Autonomic Nervous system.
AUTONOMIC SYSTEM NERVOUS.
Lecture 14 & 15 Dr. Zahoor Ali Shaikh 1. Central Nervous System (CNS) – brain and spinal cord. Peripheral Nervous System (PNS) – afferent and efferent.
Autonomic Nervous System A. 4 components 1. visceral sensory neuron (1) 2. visceral motor neurons (2) A) preganglionic B) postganglionic 3. autonomic ganglion.
SAMUEL AGUAZIM (MD) AUTONOMIC NERVOUS SYSTEM PHARMACOLOGY.
Autonomic Nervous System
ANS in the Nervous System Figure Autonomic Nervous System (ANS) The ANS consists of motor neurons that: –Innervate smooth and cardiac muscle and.
The Autonomic Nervous System $100 $200 $300 $400 $500 $100$100$100 $200 $300 $400 $500 Anatomy FINAL ROUND PhysiologyRegulation Function Grab Bag.
Autonomic Nervous System Chapter 14 Autonomic Nervous System.
Comparison of Somatic and Autonomic Systems
Figure 15.1 The ANS and Visceral Sensory Neurons.
The Autonomic Nervous System Chapter 17. Introduction Makes all routine adjustments in physiological systems. Consists of visceral motor (efferent) neurons.
1 The Autonomic Nervous System Def: The ANS consists of all visceral motor neurons innervating smooth muscle, cardiac muscle and glands. Chapter 60.
AUTONOMIC NERVOUS SYSTEM The ANS is part of the efferent portion of the peripheral nervous system.
THE AUTONOMIC NERVOUS SYSTEM (ANS)
1 14 The Autonomic Nervous System. 2 Autonomic Nervous System (ANS)  The ANS consists of motor neurons that:  Innervate smooth and cardiac muscle and.
AUTONOMIC NERVOUS SYSTEM. The autonomic system controls the visceral functions of the body: arterial pressure, gastrointestinal motility and secretion,
Autonomic nervous system Muse lecture #17 Ch 16 Dilate.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Human Anatomy & Physiology Ninth Edition C H A P T E R 14 © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact Press Images The Autonomic Nervous System.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Autonomic Nervous System (ANS)  The ANS consists of motor neurons that:  Innervate.
The Autonomic Nervous System
Chapter 14 Autonomic Nervous System Nerve Cells of the Enteric Plexus
The Autonomic Nervous System (ANS) Chapter 17. Autonomic Nervous System (ANS) Motor regulation of smooth muscle, cardiac muscle, glands & adipose tissue.
VISCERAL FUNCTION REGULATED BY NERVOUS SYSTEM Nervous system Ⅴ.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 14 The Autonomic Nervous.
Human Anatomy & Physiology FIFTH EDITION Elaine N. Marieb PowerPoint ® Lecture Slide Presentation by Vince Austin Copyright © 2003 Pearson Education, Inc.
Comparison of Somatic and Autonomic Systems. Divisions of the ANS ANS divisions: – mobilizes the body during _ – performs ___________________________________________.
Copyright © 2010 Pearson Education, Inc. Enteric nervous system Divisions of the ANS.
Neurotransmitter Effects All ____________________________________ neurons release _ – which has an _ In the ANS: – Preganglionic fibers _ – Postganglionic.
Copyright © 2010 Pearson Education, Inc. THE AUTONOMIC NERVOUS SYSTEM CHAPTER # 14.
Cholinergic Receptors The __________________________of receptors that bind ACh are _ These are named after drugs that bind to them and mimic _.
Physiology of autonomic nervous system Comparison of Somatic and Autonomic Nervous System Somatic Skeletal muscle Conscious and unconscious movement.
Autonomic Nervous System
Human Anatomy 5th ed Benjamin Cummings General Anatomy of the Autonomic Nervous System.
THE AUTONOMIC NERVOUS SYSTEM
AUTONOMIC NERVOUS SYSTEM PHYSIOLOGY. Fig. 9.1 P. 220.
Autonomic Nervous System (ANS) n The ANS consists of motor neurons that: n Innervate smooth and cardiac muscle and glands n Make adjustments to ensure.
Chapter 14. Nervous System Central Nervous System (CNS) Brain Spinal Cord Peripheral Nervous System (PNS) Motor (efferent) Autonomic (involuntary) Sympathetic.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Copyright © 2010 Pearson Education, Inc. Central nervous system (CNS)Peripheral nervous system (PNS) Motor (efferent) division Sensory (afferent) division.
The Nervous System I: The Autonomic Nervous System (ANS) Anatomy & Physiology Chapter 16.
Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 14 The Autonomic Nervous System.
Autonomic Nervous System Nestor T. Hilvano, M.D., M.P.H.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 14 The Autonomic Nervous.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 14 The Autonomic Nervous.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
The Autonomic Nervous System
Copyright 2009, John Wiley & Sons, Inc. The Autonomic Nervous System.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Chapter 20 The Autonomic Nervous System
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 14 The Autonomic Nervous.
Comparison of somatic and autonomic systems Targets – Somatic = skeletal muscle – Autonomic = smooth/cardiac muscle & glands Efferent pathways – Somatic.
The Autonomic Nervous System BIO 137 Anatomy & Physiology.
Chapter Opener 14 © 2013 Pearson Education, Inc..
The Autonomic Nervous System: Modified by Dr. Par Mohammadian
Autonomic Nervous System Keri Muma Bio 6. Organization of the Nervous System.
Copyright © 2010 Pearson Education, Inc. Central nervous system (CNS)Peripheral nervous system (PNS) Motor (efferent) division Sensory (afferent) division.
Chapter 10 Nervous System.
The Autonomic Nervous System
Chapter 14 The Autonomic Nervous System Shilla Chakrabarty, Ph.D.
The Autonomic Nervous System (ANS) Chapter 17
The Autonomic Nervous System
The Autonomic Nervous System
Neurotransmitter Effects
The Autonomic Nervous System
Autonomic Nervous System (ANS)
Presentation transcript:

Comparison of Somatic and Autonomic Systems Figure 14.2

Autonomic Nervous System (ANS) The ANS consists of motor neurons that: Innervate smooth and cardiac muscle and glands Make adjustments to ensure optimal support for body activities Operate via subconscious control Have viscera as most of their effectors

ANS Versus Somatic Nervous System (SNS) The ANS differs from the SNS in the following three areas Effectors Efferent pathways Target organ responses

The effectors of the SNS are skeletal muscles The effectors of the ANS are cardiac muscle, smooth muscle, and glands Effectors

Anatomy of ANS Figure 14.3

Axons of the ANS are a two-neuron chain Heavily myelinated axons of the somatic motor neurons extend from the CNS to the effector Axons of the ANS are a two-neuron chain The preganglionic (first) neuron has a lightly myelinated axon The ganglionic (second) neuron extends to an effector organ Efferent Pathways

Neurotransmitter Effects All somatic motor neurons release Acetylcholine (ACh), which has an excitatory effect In the ANS: Preganglionic fibers release ACh Postganglionic fibers release norepinephrine or ACh and the effect is either stimulatory or inhibitory ANS effect on the target organ is dependent upon the neurotransmitter released and the receptor type of the effector

Comparison of Somatic and Autonomic Systems Figure 14.2

The two divisions of the ANS are the sympathetic and parasympathetic The sympathetic mobilizes the body during extreme situations The parasympathetic performs maintenance activities and conserves body energy The two divisions counterbalance each other’s activity

Role of the Parasympathetic Division Concerned with keeping body energy use low Involves the D activities – digestion, defecation, and diuresis Its activity is illustrated in a person who relaxes after a meal Blood pressure, heart rate, and respiratory rates are low Gastrointestinal tract activity is high The skin is warm and the pupils are constricted

Role of the Sympathetic Division The sympathetic division is the “fight-or-flight” system Involves E activities – exercise, excitement, emergency, and embarrassment Promotes adjustments during exercise – blood flow to organs is reduced, flow to muscles is increased Its activity is illustrated by a person who is threatened Heart rate increases, and breathing is rapid and deep The skin is cold and sweaty, and the pupils dilate

Comparison of Somatic and Autonomic Systems Figure 14.2

Anatomy of ANS Division Origin of Fibers Length of Fibers Location of Ganglia Sympathetic Thoracolumbar region of the spinal cord Short preganglionic and long postganglionic Close to the spinal cord Parasympathetic Craniosacral Brain and sacral spinal cord Long preganglionic and short postganglionic In the visceral effector organs

Anatomy of ANS Figure 14.3

Parasympathetic Division Outflow Cranial Outflow Cranial Nerve Ganglion Effector Organ(s) Occulomotor (III) Ciliary Eye Facial (VII) Pterygopalatin Submandibular Salivary, nasal, and lacrimal glands Glossopharyngeal (IX) Otic Parotid salivary glands Vagus (X) Located within the walls of target organs Heart, lungs, and most visceral organs Sacral Outflow S2-S4 Located within the walls of the target organs Large intestine, urinary bladder, ureters, and reproductive organs

Parasympathetic Division Outflow Figure 14.4

Arises from spinal cord segments T1 through L2 Sympathetic Outflow Arises from spinal cord segments T1 through L2 Sympathetic neurons produce the lateral horns of the spinal cord Preganglionic fibers pass through the white rami communicantes and synapse in the chain (paravertebral) ganglia Fibers from T5-L2 form splanchnic nerves and synapse with collateral ganglia Postganglionic fibers innervate the numerous organs of the body

Sympathetic Outflow Figure 14.5

Neurotransmitters and Receptors Acetylcholine (ACh) and norepinephrine (NE) are the two major neurotransmitters of the ANS ACH is released by all preganglionic axons and all parasympathetic postganglionic axons Cholinergic fibers – ACH-releasing fibers Adrenergic fibers – sympathetic postganglionic axons that release NE or E Neurotransmitter effects can be excitatory or inhibitory depending upon the receptor type

Cholinergic Receptors The two types of receptors that bind ACh are nicotinic and muscarinic These are named after drugs that bind to them and mimic ACh effects

Nicotinic receptors are found on: Motor end plates (somatic targets) All ganglionic neurons of both sympathetic and parasympathetic divisions The hormone-producing cells of the adrenal medulla The effect of ACh binding to nicotinic receptors is always stimulatory

The effect of ACH binding: Muscarinic Receptors Muscarinic receptors occur on all effector cells stimulated by postganglionic cholinergic fibers The effect of ACH binding: Can be either inhibitory or excitatory Depends on the number of receptor type of the target organ

The two types of adrenergic receptors are alpha and beta Each type has two or three subclasses (1, 2, 1, 2 , 3) Effects of NE binding to:  receptors is generally stimulatory  receptors is generally inhibitory A notable exception – NE binding to  receptors of the heart is stimulatory

Atropine – blocks parasympathetic effects Effects of Drugs Atropine – blocks parasympathetic effects Neostigmine – inhibits acetylcholinesterase and is used to treat myasthenia gravis Tricyclic antidepressants – prolong the activity of NE on postsynaptic membranes Over-the-counter drugs for colds, allergies, and nasal congestion – stimulate -adrenergic receptors Beta-blockers – attach mainly to 1 receptors and reduce heart rate and prevent arrhythmias

Drugs that Influence the ANS Table 14.4.1

Drugs that Influence the ANS Table 14.4.2

Interactions of the Autonomic Divisions Most visceral organs are innervated by both sympathetic and parasympathetic fibers This results in dynamic antagonisms that precisely control visceral activity Sympathetic fibers increase heart and respiratory rates, and inhibit digestion and elimination Parasympathetic fibers decrease heart and respiratory rates, and allow for digestion and the discarding of wastes

This sympathetic tone (vasomotor tone): The sympathetic division controls blood pressure and keeps the blood vessels in a continual state of partial constriction This sympathetic tone (vasomotor tone): Constricts blood vessels and causes blood pressure to rise as needed Prompts vessels to dilate if blood pressure is to be decreased Alpha-blocker drugs interfere with vasomotor fibers and are used to treat hypertension

Parasympathetic tone: Slows the heart Dictates normal activity levels of the digestive and urinary systems The sympathetic division can override these effects during times of stress Drugs that block parasympathetic responses increase heart rate and block fecal and urinary retention

ANS cooperation is best seen in control of the external genitalia Cooperative Effects ANS cooperation is best seen in control of the external genitalia Parasympathetic fibers cause vasodilation and are responsible for erection of the penis and clitoris Sympathetic fibers cause ejaculation of semen in males and reflex peristalsis in females

Unique Roles of the Sympathetic Division Regulates many functions not subject to parasympathetic influence These include the activity of the adrenal medulla, sweat glands, arrector pili muscles, kidneys, and most blood vessels The sympathetic division controls: Thermoregulatory responses to heat Release of renin from the kidneys Metabolic effects

Thermoregulatory Responses to Heat Applying heat to the skin causes reflex dilation of blood vessels Systemic body temperature elevation results in widespread dilation of blood vessels This dilation brings warm blood to the surface and activates sweat glands to cool the body When temperature falls, blood vessels constrict and blood is retained in deeper vital organs Thermoregulatory Responses to Heat

The hypothalamus is the main integration center of ANS activity Levels of ANS Control The hypothalamus is the main integration center of ANS activity Subconscious cerebral input via limbic lobe connections influences hypothalamic function Other controls come from the cerebral cortex, the reticular formation, and the spinal cord

Levels of ANS Control Figure 14.9