Laboratory and Astronomical Detection of CCCN ¯ P. Thaddeus, C. A. Gottlieb, H. Gupta, S. Bruenken, M. C. McCarthy, M. Agundez, M. Guelin, and J.Cernicharo, Astrophysical Journal 677, 1132 (2008)
Background CCCN radical (X 2 Σ) Isoelectronic with CCCCH First observed in space (Guelin and Thaddeus1977) Glow discharge (Gottlieb et al. 1983) Supersonic beam (McCarthy et al. 1995) LIF spectrum (358 nm; Hoshina and Endo, JCP 2007) CCCN¯ in space Herbst (Nature 1981) Petrie and Herbst (ApJ 1997) Anions in the laboratory 6 anions now detected Anions in space 4 anions detected with surprisingly high abundances Conclusions
Spectroscopic Properties of CCCN ¯ CCCN¯ Binding energy one of highest (4.58 eV) Closed shell 1 Σ No high-resolution spectroscopy Dipole moment (3.1 D) Spectroscopic enhancement ~2.4 High-level quantum calculations Gupta and Stanton (2007) Kolos, Gronowski, and Botschwina (JCP 2008)
Spectral Compression
Laboratory Measurements Experiment: Results: Glow discharge (~20 mA) 12 transitions observed HCCCN (Ar or N 2 ) GHz Concentration: 2 constants: B and D CCCN - /CCCN ~1% Mole fraction: rms = 19 kHz ~5 x (3 - 10) x HCCCN Other sources: HCCH/N 2
Evidence for CCCN ¯ CCCN¯ A.Experiment Closed shell ground state B within 2% of CCCN Ion drift B.Spectroscopic Measured vs theoretical: B and D eQq (McCarthy and Thaddeus FC04; JCP 2008) Ruled out: isotopic CCCN vibrationally excited CCCN CCCN+
radiation Ion Drift Measurements HV HV Single pass absorption with alternating polarity
Spectroscopic Constants _______________________________________________________ Theoretical ______________________ Constant Measured This work KGB _______________________________________________________ B (20) xD (10) eQq (5) -3.3 … _______________________________________________________
Evidence for CCCN ¯ CCCN¯ A.Experiment Closed shell ground state B within 2% of CCCN Ion drift B.Spectroscopic Measured vs theoretical: B and D eQq (McCarthy and Thaddeus FC04; JCP 2008) Ruled out: isotopic CCCN vibrationally excited CCCN CCCN +
Formation in Glow Discharge I. Dissociative electron attachment: A. CN¯ e¯ + NCCN CN¯ + CN (Tronc and Azria, CPL, 1982) (Kuhn, Fenzlaff, and Illenberger, CPL, 1987) B. C 2n H¯ e¯ + HC 2n H C 2n H¯ + H [May et al., Phys. Rev. A 77, (2008)] C. CCCN ¯ e¯ + HCCCN CCCN ¯ + H (Graupner et al., New J. Phys., 2006) II. Other mechanisms?
CCCN ¯ in Space IRC lines observed: 97, 106, 135, and 145 GHz rms = 0.4 MHz Intensities No missing lines Spectroscopic constants Constant (MHz)LaboratoryAstronomical B (20) (3) 10 6 x D (10) 700(100)
Abundances in Space TMC-1 IRC Anion/Radical # obs. calc. obs. calc. CCCN ¯ <0.8 a 1 b 0.52 a C 4 H ¯ <0.014 c 0.2 d e 0.8 d C 6 H ¯ 1.6 c 8.9 d 8.6 f 30 d C 8 H ¯ 5 c 5.4 d 28/37 g 28 d # All ratios in % a This work; b Petrie and Herbst, ApJ 1997; c Bruenken et al. 2007; d Millar et al. ApJL 2007; e Cernicharo et al. ApJL 2007; f Kasai et al. ApJL 2007; g Remijan et al., ApJL 2007; Kawaguchi et al., PASJ 2007.
Properties of anions closed-shell 1 S ground states and large dipole moments (m) large electron affinities (EA) radicals are observed in astronomical sources anions do not react with H 2 Barckholtz et al., ApJL 2001 EA (eV)m (D)m (D)B (MHz) CCH 2 S CCH¯ 1 S 3.141,639 C 4 H 2 S C 4 H¯ 1 S 6.1 4,656 C 6 H 2 P C 6 H¯ 1 S 8.2 1,377 C 8 H 2 P C 8 H¯ 1 S CN 2 S CN¯ 1 S ,133 C 3 N 2 S C 3 N¯ 1 S 3.1 4,852
mm-wave absorption spectrometer InSb detector LN 2 solenoid 2 m power supply Gunn × n low current dc glow discharge [C 2 H 2 (85 %) + Ar (15 %)] frequency coverage: 70 – 900 GHz frequency accuracy: 10 – 50 kHz cell walls cooled: K