Laboratory and Astronomical Detection of CCCN ¯ P. Thaddeus, C. A. Gottlieb, H. Gupta, S. Bruenken, M. C. McCarthy, M. Agundez, M. Guelin, and J.Cernicharo,

Slides:



Advertisements
Similar presentations
June 26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of ZnS (X 1  + ) Lindsay N. Zack Lucy M. Ziurys Department.
Advertisements

High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
CHARACTERIZATION AND FORMATION PROCESSES OF C 4 -, C 4 H and C 4 H - M. L. SENENT Departamento de Astrofísica Molecular e Infrarroja, Instituto de Estructura.
Production of Molecular Ions Using a Hollow-Cathode Spectrometer Trevor Cross, Nadine Wehres, Mary Radhuber, Anne Carroll, Susanna Widicus Weaver Department.
OXYGEN-18 STUDIES OF HOCO AND HONO FORMATION Oscar Martinez Jr. and Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics School of Engineering.
SUBMILLIMETER-WAVE ROTATIONAL SPECTRA OF DNC T. Amano Department of Chemistry and Department of Physics and Astronomy The University of Waterloo.
The first discovered negative molecular ion, C 6 H - M. C. McCarthy et al, ApJ, 652:L 吳宇智 (Yu-chih, Wu) Department of Physics, NTHU 12,19,2006.
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Infrared spectroscopy of Li(methylamine) n (NH 3 ) m clusters Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University.
Electron Paramagnetic Resonance at Hunter College
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
The Millimeter/Submillimeter Spectrum of the CCP (X 2  r ) Radical DeWayne T. Halfen Steward Observatory, Arizona Radio Observatory, University of Arizona.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
ROTATIONAL SPECTRA OF THE N 2 OH + AND CH 2 CHCNH + MOLECULAR IONS Oscar Martinez Jr. Valerio Lattanzi Michael C. McCarthy Harvard-Smithsonian Center for.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Laboratory characterization and astronomical detection of the nitrosylium (nitrosyl) ion, NO + Stéphane Bailleux University.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
63rd Symposium on Molecular Spectroscopy June 18, 2008 Submillimeter Spectroscopy of ZnO (X 1  + ) Lindsay N. Zack Robin L. Pulliam Lucy M. Ziurys Departments.
Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester.
3-D SUBMILLIMETER SPECTROSCOPY FOR ASTROPHYSICS AND SPECTRAL ASSIGNMENT SARA FORTMAN, CHRISTOPHER NEESE, IVAN R. MEDVEDEV, FRANK C. DE LUCIA, Department.
3-D SUBMILLIMETER SPECTROSCOPY FOR ASTROPHYSICS AND SPECTRAL ASSIGNMENT SARAH M. FORTMAN, IVAN R. MEDVEDEV, FRANK C. DE LUCIA, Department of Physics, The.
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
The Infrared Spectrum of CH 5 + Revisited Kyle N. Crabtree, James N. Hodges, and Benjamin J. McCall.
The ALMA view of a Carbon Rich AGB Star: The Spectrum of IRC+10216
Copyright All rights reserved. June 25, 2015ISMS, 2015
Copyright All rights reserved.. Introduction to the hydronium ion (H 3 O + )  H 3 O + has a pyramidal structure and is iso-electronic to ammonia.
Cavity-Enhanced Direct Frequency Comb Velocity Modulation Spectroscopy Laura Sinclair William Ames, Tyler Coffey, Kevin Cossel Jun Ye and Eric Cornell.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
70 th International Symposium on Molecular Spectroscopy University of Illinois at Champaign-Urbana Jun 22-26, 2015 Observation of dipole-bound state and.
A Missing Link: The Rotational Spectrum, Geometrical Structure, and Astronomical Discovery of Disilicon Carbide, SiCSi M.-A. Martin-Drumel, C. A. Gottlieb,
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Photoelectron Spectroscopy of Pyrazolide Anion Three Low-lying Electronic States of the Pyrazolyl Radical Adam J. Gianola Takatoshi Ichino W. Carl Lineberger.
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
Application of Sputtering Method to the Observation of Rotational Spectra of Metal-containing Molecules M.Tanimoto, E.Y.Okabayashi, F.Koto, T.Okabayashi.
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
Terahertz spectroscopy of deuterated methylene bi-radicals, CHD and CD 2 Stéphane Bailleux June 25, 2015 – 70 th ISMS.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy.
Carlos Cabezas and Yasuki Endo
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
A Green Bank Telescope Search for ortho-benzyne (o-C6H4) in CRL 618
The Rotational Spectra of the Carbon Chain Anions C2nH¯ (n = 1, 2, 4)
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
The Pure Rotational Spectrum of FeO+ (X6S+)
Fourier Transform Infrared Spectral
H’(t)=E-M field D  = - fi Transition dipole moment.
Presentation transcript:

Laboratory and Astronomical Detection of CCCN ¯ P. Thaddeus, C. A. Gottlieb, H. Gupta, S. Bruenken, M. C. McCarthy, M. Agundez, M. Guelin, and J.Cernicharo, Astrophysical Journal 677, 1132 (2008)

Background CCCN radical (X 2 Σ) Isoelectronic with CCCCH First observed in space (Guelin and Thaddeus1977) Glow discharge (Gottlieb et al. 1983) Supersonic beam (McCarthy et al. 1995) LIF spectrum (358 nm; Hoshina and Endo, JCP 2007) CCCN¯ in space Herbst (Nature 1981) Petrie and Herbst (ApJ 1997) Anions in the laboratory 6 anions now detected Anions in space 4 anions detected with surprisingly high abundances Conclusions

Spectroscopic Properties of CCCN ¯ CCCN¯ Binding energy one of highest (4.58 eV) Closed shell 1 Σ No high-resolution spectroscopy Dipole moment (3.1 D) Spectroscopic enhancement ~2.4 High-level quantum calculations Gupta and Stanton (2007) Kolos, Gronowski, and Botschwina (JCP 2008)

Spectral Compression

Laboratory Measurements Experiment: Results: Glow discharge (~20 mA) 12 transitions observed HCCCN (Ar or N 2 ) GHz Concentration: 2 constants: B and D CCCN - /CCCN ~1% Mole fraction: rms = 19 kHz ~5 x (3 - 10) x HCCCN Other sources: HCCH/N 2

Evidence for CCCN ¯ CCCN¯ A.Experiment Closed shell ground state B within 2% of CCCN Ion drift B.Spectroscopic Measured vs theoretical: B and D eQq (McCarthy and Thaddeus FC04; JCP 2008) Ruled out: isotopic CCCN vibrationally excited CCCN CCCN+

radiation Ion Drift Measurements HV HV Single pass absorption with alternating polarity

Spectroscopic Constants _______________________________________________________ Theoretical ______________________ Constant Measured This work KGB _______________________________________________________ B (20) xD (10) eQq (5) -3.3 … _______________________________________________________

Evidence for CCCN ¯ CCCN¯ A.Experiment Closed shell ground state B within 2% of CCCN Ion drift B.Spectroscopic Measured vs theoretical: B and D eQq (McCarthy and Thaddeus FC04; JCP 2008) Ruled out: isotopic CCCN vibrationally excited CCCN CCCN +

Formation in Glow Discharge I. Dissociative electron attachment: A. CN¯ e¯ + NCCN  CN¯ + CN (Tronc and Azria, CPL, 1982) (Kuhn, Fenzlaff, and Illenberger, CPL, 1987) B. C 2n H¯ e¯ + HC 2n H  C 2n H¯ + H [May et al., Phys. Rev. A 77, (2008)] C. CCCN ¯ e¯ + HCCCN  CCCN ¯ + H (Graupner et al., New J. Phys., 2006) II. Other mechanisms?

CCCN ¯ in Space IRC lines observed: 97, 106, 135, and 145 GHz rms = 0.4 MHz Intensities No missing lines Spectroscopic constants Constant (MHz)LaboratoryAstronomical B (20) (3) 10 6 x D (10) 700(100)

Abundances in Space TMC-1 IRC Anion/Radical # obs. calc. obs. calc. CCCN ¯ <0.8 a 1 b 0.52 a C 4 H ¯ <0.014 c 0.2 d e 0.8 d C 6 H ¯ 1.6 c 8.9 d 8.6 f 30 d C 8 H ¯ 5 c 5.4 d 28/37 g 28 d # All ratios in % a This work; b Petrie and Herbst, ApJ 1997; c Bruenken et al. 2007; d Millar et al. ApJL 2007; e Cernicharo et al. ApJL 2007; f Kasai et al. ApJL 2007; g Remijan et al., ApJL 2007; Kawaguchi et al., PASJ 2007.

Properties of anions closed-shell 1 S ground states and large dipole moments (m) large electron affinities (EA) radicals are observed in astronomical sources anions do not react with H 2 Barckholtz et al., ApJL 2001 EA (eV)m (D)m (D)B (MHz) CCH 2 S CCH¯ 1 S 3.141,639 C 4 H 2 S C 4 H¯ 1 S 6.1 4,656 C 6 H 2 P C 6 H¯ 1 S 8.2 1,377 C 8 H 2 P C 8 H¯ 1 S CN 2 S CN¯ 1 S ,133 C 3 N 2 S C 3 N¯ 1 S 3.1 4,852

mm-wave absorption spectrometer InSb detector LN 2 solenoid 2 m power supply Gunn × n low current dc glow discharge [C 2 H 2 (85 %) + Ar (15 %)] frequency coverage: 70 – 900 GHz frequency accuracy: 10 – 50 kHz cell walls cooled: K