Lecture 314/20/07. Section 1 Equilibrium Le Chatelier’s Solubility Section 2 Acid/Base equilibria pH Buffers Titration Section 3 Oxidation numbers Balancing.

Slides:



Advertisements
Similar presentations
Lecture 354/29/05 TSC 006 Tuesday, May 3 from 2:30 - 3:30 p.m.
Advertisements

Lecture 314/10/06. Thermodynamics: study of energy and transformations Energy Kinetic energy Potential Energy.
Lecture 344/24/06. Entropy (Measurement of disorder) Related to number of microstates ∆S universe = ∆S system + ∆S surroundings 2 nd Law of Thermodynamics.
Chapter 19 Chemical Thermodynamics
The entropy, S, of a system quantifies the degree of disorder or randomness in the system; larger the number of arrangements available to the system, larger.
Lecture 334/21/06. QUIZ 1.A 12.3 g sample of iron requires heat transfer of 41.0 J to raise its temperature from 17.3 ºC to 24.7 ºC. Calculate the specific.
Copyright 1999, PRENTICE HALLChapter 191 Chemical Thermodynamics Chapter 19 David P. White University of North Carolina, Wilmington.
Thermodynamics Chapter 19 Liquid benzene Production of quicklime Solid benzene ⇅ CaCO 3 (s) ⇌ CaO + CO 2.
Thermodynamics Chapter 19 Liquid benzene Production of quicklime Solid benzene ⇅ CaCO 3 (s) ⇌ CaO + CO 2.
Lecture 304/18/07. Solid/Liquid Heat of fusion Solid  Liquid Endothermic ice  Water (333 J/g or 6 KJ/mol) Heat of crystallization Liquid  Solid Exothermic.
Chemical Thermodynamics © 2009, Prentice-Hall, Inc. Chapter 19 Chemical Thermodynamics Chemistry, The Central Science, 11th edition Theodore L. Brown;
Chapter 19 Chemical Thermodynamics
Chapter 19 Chemical Thermodynamics
Lecture 324/19/06. Section 1 Equilibrium Le Chatelier’s Solubility Section 2 Acid/Base equilibria pH Buffers Titration Section 3 Oxidation numbers Balancing.
Chemical Thermodynamics BLB 12 th Chapter 19. Chemical Reactions 1. Will the reaction occur, i.e. is it spontaneous? Ch. 5, How fast will the reaction.
Chapter 19: Chemical Thermodynamics Tyler Brown Hailey Messenger Shiv Patel Agil Jose.
CHEM 163 Chapter 20 Spring minute exercise Is each of the following a spontaneous change? Water evaporates from a puddle A small amount of sugar.
Chemical Thermodynamics. Spontaneous Processes First Law of Thermodynamics Energy is Conserved – ΔE = q + w Need value other than ΔE to determine if a.
Thermodynamics Chapter st Law of Thermodynamics Energy is conserved.  E = q + w.
Chapter 19 Chemical Thermodynamics Lecture Presentation John D. Bookstaver St. Charles Community College Cottleville, MO © 2012 Pearson Education, Inc.
CHEMICAL THERMODYNAMICS The Second Law of Thermodynamics: The is an inherent direction in which any system not at equilibrium moves Processes that are.
Chapter 19 Chemical Thermodynamics John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc. Modified by S.A. Green, 2006.
Spontaneity, Entropy, and Free Energy
Ch. 19: Chemical Thermodynamics (Thermochemistry II) Chemical thermodynamics is concerned with energy relationships in chemical reactions. - We consider.
First Law of Thermodynamics-The total amount of energy in the universe is constant. Second Law of Thermodynamics- All real processes occur spontaneously.
Chapter 19 Chemical Thermodynamics. First Law of Thermodynamics Energy cannot be created nor destroyed. Therefore, the total energy of the universe is.
Thermodynamics Chapter 18.
Chapter 20: Thermodynamics
First Law of Thermodynamics  You will recall from Chapter 5 that energy cannot be created nor destroyed.  Therefore, the total energy of the universe.
Prentice Hall © 2003Chapter 19 Chapter 19 Chemical Thermodynamics CHEMISTRY The Central Science 9th Edition David P. White.
In general, the more atoms in its molecules, the greater is the entropy of a substance Entropy is a function of temperature.
Thermodynamics Chapter 19. First Law of Thermodynamics You will recall from Chapter 5 that energy cannot be created or destroyed. Therefore, the total.
Relating energy and extent of reaction.  Define thermodynamics  Define enthalpy  How is enthalpy related to the first law of thermodynamics?
Thermodynamics 3. 2 nd Law of Thermodynamics The driving force for a spontaneous process is an increase in the entropy of the universe. Entropy, S, can.
Entropy, Free Energy, and Equilibrium Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Thermodynamics © 2009, Prentice-Hall, Inc. Topic 9 Chapter 18 Chemical Thermodynamics.
Chapter 19: Chemical Thermodynamics
Chapter 19 Chemical Thermodynamics Lecture Presentation John D. Bookstaver St. Charles Community College Cottleville, MO © 2012 Pearson Education, Inc.
Prentice Hall © 2003Chapter 19 Chapter 19 Chemical Thermodynamics CHEMISTRY The Central Science 9th Edition.
AP Chapter 19.  Energy can not be created nor destroyed, only transferred between a system and the surroundings.  The energy in the universe is constant.
Free Energy and Thermodynamics Chapter 17. A process is said to be spontaneous if it occurs without outside intervention. Spontaneity.
Section 19.1 Entropy and the Three Laws of Thermodynamics
Spontaneity. Spontaneous Processes P/C change that occurs with no outside intervention exothermic chemical rxns are spontaneous energy still must be supplied.
CHE 116 No. 1 Chapter Nineteen Copyright © Tyna L. Meeks All Rights Reserved.
Chemical Thermodynamics. Recall that, at constant pressure, the enthalpy change equals the heat transferred between the system and its surroundings. 
Chemical Thermodynamics. Recall that, at constant pressure, the enthalpy change equals the heat transferred between the system and its surroundings. 
 State Function (°)  Property with a specific value only influenced by a system’s present condition  Only dependent on the initial and final states,
Entropy – Randomness & Disorder Mr Nelson
Chemical Thermodynamics BLB 11 th Chapter 19. Chemical Reactions 1. How fast will the reaction occur? Ch How far toward completion will the reaction.
Chemical Thermodynamics © 2009, Prentice-Hall, Inc. Chapter 19 Chemical Thermodynamics Chemistry, The Central Science, 11th edition Theodore L. Brown;
Prentice Hall © 2003Chapter 19 Chapter 19 Chemical Thermodynamics CHEMISTRY The Central Science 9th Edition David P. White.
Entropy, Free Energy, and Equilibrium Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Thermodynamics  2009, Prentice-Hall, Inc. First Law of Thermodynamics You will recall that energy cannot be created nor destroyed. Therefore,
Chapter 19: Thermodynamics First Law of Thermodynamics: energy cannot be created or destroyed -total energy of the universe cannot change -you can transfer.
Chemical Thermodynamics First Law of Thermodynamics You will recall from earlier this year that energy cannot be created nor destroyed. Therefore, the.
1 Chemical Thermodynamics 2 kinetics (little k): told us how fast a RXN would go and indicated a mechanism. Equilibria (big K): told us to what extent.
Advanced Thermochemistry Mrs. Stoops Chemistry. Chapter Problems Ch 19 p742: 16, 20, 28, 34, 38, 40, 46, 52, 56, 58, 75, 93.
Chapter 19 Spontaneity, entropy and free energy (rev. 11/09/08)
Thermodynamics Chapter Spontaneous Processes – process that occurs without any outside intervention, the internal energy alone determines if.
Chemical Thermodynamics Chapter 19 Chemical Thermodynamics 19.1 Spontaneous Processes 19.2 Entropy and the Second Law of Thermodynamics 19.3 The Molecular.
Thermodynamics Why Chemical Reactions Happen
Chapter 19 Chemical Thermodynamics
Chapter Thermodynamics and Electrochemistry
Ch. 19: Chemical Thermodynamics (Thermochemistry II)
Chapter 19 Chemical Thermodynamics
Entropy and Gibbs Free Energy
Ch. 16: Spontaneity. Entropy & Free Energy (Advanced Thermochemistry)
Presentation transcript:

Lecture 314/20/07

Section 1 Equilibrium Le Chatelier’s Solubility Section 2 Acid/Base equilibria pH Buffers Titration Section 3 Oxidation numbers Balancing Redox reactions Galvanic cells Standard reduction potential table

Entropy (Measurement of disorder) Related to number of microstates S = klnW ∆S universe = ∆S system + ∆S surroundings 2 nd Law of Thermodynamics Entropy of the universe increases with spontaneous reactions Reversible reactions ∆S universe = ∆S system + ∆S surroundings = 0 Can be restored to the original state by exactly reversing the change Each step is at equilibrium Irreversible reaction ∆S universe = ∆S system + ∆S surroundings > 0 Original state can not be restored by reversing path spontaneous

3 rd Law of thermodynamics S = O at O K S° - entropy gained by converting it from a perfect crystal at 0 K to standard state conditions

3 rd Law of thermodynamics S = O at O K S° - entropy gained by converting it from a perfect crystal at 0 K to standard state conditions ∆S° = ΣS°(products) - ΣS°(reactants)

Degrees of freedom translational motion molecules in gas > liquid > solid vibrational motion movement of a atom inside a molecule rotational motion rotation of a molecule

Entropy trends Entropy increases: with more complex molecules with dissolution of pure gases/liquids/solids with increasing temperature with increasing volume with increasing # moles of gases

Which has higher entropy? dry ice orCO 2 liquid water at 25°Corliquid water at 50°C pure Al 2 O 3 (s)orAl 2 O 3 with some Al 2+ replaced with Cr 3+ 1 mole of N 2 at 1 atmor1 mol of N 2 at 10 atm CH 3 CH 2 CH 2 CH 3 (g)or CH 3 CH 3 (g)

Is the reaction spontaneous?

Gibbs Free Energy ( ∆G) ∆G° = ∆H° - T∆S° ∆G = ∆H - T∆S ∆G° = Σn∆G f ° (products) - Σn∆G f ° (reactants)

Gibbs Free Energy ∆G = ∆H - T∆S ∆H∆S-T∆S∆G spontaneous? example -+ 2O 3 (g)  3O 2 (g) +- 3O 2 (g)  2O 3 (g) -- H 2 O (l)  H 2 O (s) ++ H 2 O (s)  H 2 O (l)

Gibbs Free Energy (∆G) and equilibrium R = J/mol-K