XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 1/62 Bulk Properties of QCD Matter Kai Schweda, University of Heidelberg / GSI Darmstadt Many.

Slides:



Advertisements
Similar presentations
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Advertisements

Marcus Bleicher, Berkeley, Oct Elliptic Flow in High Energetic Nuclear Collisions Marcus Bleicher & Xianglei Zhu FIAS & Institut für Theoretische.
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
TJH: ISMD 2005, 8/9-15 Kromeriz, Czech Republic TJH: 1 Experimental Results at RHIC T. Hallman Brookhaven National Laboratory ISMD Kromeriz, Czech Republic.
Aug , 2005, XXXV ISMD, Czech X.Dong, USTC 1 Open charm production at RHIC Xin Dong University of Science and Technology of China - USTC  Introduction.
First Alice Physics Week, Erice, Dec 4  9, Heavy  Flavor (c,b) Collectivity at RHIC and LHC Kai Schweda, University of Heidelberg A. Dainese,
ISMD’05, Kromeriz, Aug 09  15, Heavy  Flavor (c,b) Collectivity – Light  Flavor (u,d,s) Thermalization at RHIC Kai Schweda, University of Heidelberg.
Dilepton Forum, GSI, Feb 27, 2007 Kai Schweda 1 Heavy-Flavor Production at RHIC Kai Schweda, University of Heidelberg / GSI Darmstadt.
NanChang, April 19, Tsallis Interperation in Heavy-ion (HI) Physics Ming Shao, Zebo Tang, Yi Li, Zhangbu Xu CPPT/USTC Introduction & Motivation Why.
2010/10/18ATHIC2010, Oct 18-20, Wuhan1 Systematic study of particle spectra in heavy-ion collisions using Tsallis statistics Ming Shao, Zebo Tang, Yi Li,
Heavy Quark Probes of QCD Matter at RHIC Huan Zhong Huang University of California at Los Angeles ICHEP-2004 Beijing, 2004.
HD lunch talk, 30 Apr 2008 Kai Schweda 1 Heavy-Quarks with ALICE  Some Highlights from the ALICE Physics Week in Prague March 2008 Kai Schweda, University.
Physics of High Baryon Density,Trento, May 29  June 2, Charm with STAR Kai Schweda, University of Heidelberg A. Dainese, X. Dong, J. Faivre, Y.
RNM meeting FIAS, Frankfurt, 22 Feb Hunt for the QGP at RHIC Kai Schweda, University of Heidelberg S. Blyth, A. Dainese, T. Dietel, X. Dong, J.
R. L. Thews Hard Probes 2004 Lisbon QUARKONIUM FORMATION IN STATISTICAL AND KINETIC MODELS R. L. THEWS UNIVERSITY OF ARIZONA HARD PROBES 2004 LISBON November.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 1 D – D Correlations as a Sensitive Probe of Light – quark Thermalization Kai Schweda, University.
EMMI workshop, St. Goar, 31 Aug  3 Sep, 2009 Kai Schweda 1/26 (Some) Bulk Properties at RHIC Kai Schweda, University of Heidelberg / GSI Darmstadt Many.
Nu XuInternational Conference on Strangeness in Quark Matter, UCLA, March , 20061/20 Search for Partonic EoS in High-Energy Nuclear Collisions Nu.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
ISMD, Berkeley, Aug 4  9, 2007 Kai Schweda 1 Bulk Properties of QCD – matter at Highest Colider Energies Kai Schweda, University of Heidelberg / GSI Darmstadt.
Statistical Models A.) Chemical equilibration (Braun-Munzinger, Stachel, Redlich, Tounsi) B.) Thermal equilibration (Schnedermann, Heinz) C.) Hydrodynamics.
DPG spring meeting, Tübingen, March Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Recent results from STAR at RHIC.
USTC, Hefei, Nov 22, Heavy  Flavor (c,b) Collectivity at RHIC and LHC Kai Schweda, University of Heidelberg A. Dainese, X. Dong, J. Faivre, Y.
WWND, San Diego1 Scaling Characteristics of Azimuthal Anisotropy at RHIC Michael Issah SUNY Stony Brook for the PHENIX Collaboration.
Charmonium Production in Heavy-Ion Collisions Loïc Grandchamp Lawrence Berkeley National Laboratory Texas A&M, Dec. 10 th 2004 w/ R. Rapp.
17 Sep 2012 Erice, 34th Course Open charm production with ALICE at the LHC Kai Schweda (for the ALICE Collaboration) Physikalisches Institut University.
Hadronic Resonances in Heavy-Ion Collisions at ALICE A.G. Knospe for the ALICE Collaboration The University of Texas at Austin 25 July 2013.
Strange and Charm Probes of Hadronization of Bulk Matter at RHIC International Symposium on Multi-Particle Dynamics Aug 9-15, 2005 Huan Zhong Huang University.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
Nu Xu1/28VIII International Workshop on Relativistic Aspects of Nuclear Physics, Rio de Janeiro, Brazil, 3-6, November, 2008 Explore the QCD Phase Diagram.
Rashmi Raniwala Hot & Dense Matter in RHIC-LHC Era, February 12-14, 2008, TIFR, Mumbai 1 Rashmi Raniwala Department of Physics University of Rajasthan.
May, 20, 2010Exotics from Heavy Ion Collisions KE T and Quark Number Scaling of v 2 Maya Shimomura University of Tsukuba Collaborated with Yoshimasa Ikeda,
Partonic Collectivity at RHIC ShuSu Shi for the STAR collaboration Lawrence Berkeley National Laboratory Central China Normal University.
//Talk/2004/11MIT/nxu_mit_26oct04// LNS, November 15, 2004 Nu Xu 1 / 40 Recent Results from STAR at RHIC Nu Xu Lawrence Berkeley National Laboratory X.
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Aug. 4-9, 2005, QM2005, Budapest X.Dong, USTC 1 Open charm production at RHIC Xin Dong University of Science and Technology of China - USTC.
M. Oldenburg Strange Quark Matter 2006 — March 26–31, Los Angeles, California 1 Centrality Dependence of Azimuthal Anisotropy of Strange Hadrons in 200.
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC Ingrid Kraus Nikhef and TU Darmstadt.
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Helen Caines Yale University Soft Physics at the LHC - Catania - Sept Questions for the LHC resulting from RHIC Strangeness Outline Chemistry Yields.
//Nxu/tex3/TALK/2004/10USTC Collective Dynamics in High-Energy Collisions, USTC, October 18-19, 2004 Nu Xu 1 Charm Production at RHIC (1) Introduction.
CCAST, Beijing, China, 2004 Nu Xu //Talk/2004/07USTC04/NXU_USTC_8July04// 1 / 26 Collective Expansion in Relativistic Heavy Ion Collisions -- Search for.
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
HIRSCHEGG, January , 2005 Nu Xu //Talk/2005/01Hirschegg05// 1 / 24 Search for Partonic EoS in High-Energy Collisions Nu Xu Lawrence Berkeley National.
Peter Kolb, CIPANP03, May 22, 2003what we learn from hydro1 What did we learn, and what will we learn from Hydro CIPANP 2003 New York City, May 22, 2003.
John Harris (Yale) LHC Conference, Vienna, Austria, 15 July 2004 Heavy Ions - Phenomenology and Status LHC Introduction to Rel. Heavy Ion Physics The Relativistic.
Ralf Averbeck, Stony Brook University XXXX th Rencontres de Moriond La Thuile, Italy, March 12-19, 2005 The Charm (and Beauty) of RHIC l Heavy flavor in.
OPEN HEAVY FLAVORS 1. Heavy Flavor 2 Heavy quarks produced in the early stages of the collisions (high Q2)  effective probe of the high-density medium.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
Quantitative Comparison of Viscous Hydro with Data What is needed to make progress: the STAR-flavored view Nu Xu (for STAR Collaboration) Nuclear Science.
Bulk properties at RHIC Olga Barannikova (Purdue University) Motivation Freeze-out properties at RHIC STAR perspective STAR  PHENIX, PHOBOS Time-span.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
Nu Xu“Hot and Dense Matter in the RHIC-LHC Era”, Mumbai, India, February 12-14, 20081/27 Many Thanks to the Conference Organizers Partonic EoS at RHIC.
Department of Physics, Oregon University, 7 October, 2004 Nu Xu //Nxu/tex3/TALK/2004/10OU 1 The `Big Bang’ in the Laboratory -- The Physics of High-energy.
Nu Xu1/36 International School of Nuclear Physics, 30 th Course, Erice-Sicily, September 2008 Explore the QCD Phase Diagram - Partonic Equation.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
R. Lacey, SUNY Stony Brook 1 Arkadij Taranenko XVIII Baldin ISHEPP September 25-30, JINR Dubna Nuclear Chemistry Group SUNY Stony Brook, USA Scaling Properties.
Strange hadrons and resonances at LHC energies with the ALICE detector INPC 2013 Firenze, Italy 2 -7 June 2013 A. Badalà (INFN Sezione di Catania) for.
Bulk  Eigenschaften von QCD  Materie bei höchsten Kolliderenergien
Outline Introduction LHC and ALICE Heavy-quark production in pp
Review of ALICE Experiments
Open charm production in pp and Pb-Pb collisions in ALICE at the LHC
Collective Dynamics at RHIC
Strangeness in Collisions, BNL, February , 2006
Open charm production with ALICE at the LHC
Many Thanks to Organizers!
Dipartimento Interateneo di Fisica, Bari (Italy)
Presentation transcript:

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 1/62 Bulk Properties of QCD Matter Kai Schweda, University of Heidelberg / GSI Darmstadt Many thanks to organizers !

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 2/62 Outline  Introduction  Hadron Abundances - T ch  Collective Flow - T fo,   Heavy Quarks - open charm and quarkonia

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Introduction

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 4/62 Source: Michael Turner, National Geographic (1996) Quark Gluon Plasma: (a)Deconfined and (b)thermalized state of quarks and gluons  Study partonic EOS at RHIC and LHC (?) Probe thermalization using heavy-quarks Quark Gluon Plasma

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Nuclear phase diagram 1)Heavy quarks with ALICE at LHC: - Study medium properties - pQCD in hot and dense environment 2)FAIR/GSI program: - Search for the possible phase boundary. - Chiral symmetry restoration Energy scan

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 6/62 Colliding Heavy Nuclei

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 7/62 High-Energy Nuclear Collisions 1) Initial condition:2) System evolves:3) Bulk freeze-out -Baryon transfer- parton/hadron expansion- hadronic dof - E T production- inel. interactions cease: -Partonic dof particle ratios, T ch,  B - elas. interactions cease Particle spectra, T th, Time  Plot: Steffen A. Bass, Duke University

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 8/62 Collision Geometry x z Non-central Collisions Au + Au  s NN = 200 GeV Uncorrected Number of participants: number of incoming nucleons in the overlap region Number of binary collisions: number of inelastic nucleon-nucleon collisions Charged particle multiplicity  collision centrality Reaction plane: x-z plane

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Hadron Abundances

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 10/62 Particle Multilplicities PHOBOS fit HIJING BBar Armesto et al. AMPT Eskola CGC KLN ASW DPMJET-III EHNRR  at LHC, dN/d   1000  3000  estimate energy density Theory points: HI at LHC – last call for predictions, CERN, May 2007.PHOBOS compilation: W. Busza, SQM07.

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 11/62 EoS from Lattice QCD 1) Large increase in  !  Large increase in Ndof: Hadrons vs. partons 2) T C ~ 160 MeV 3) Boxes indicate max. initial temperatures  Longest expansion duration at LHC  Expect large partonic collectivity at LHC Z. Fodor et al, JHEP 0203:014(02) C.R. Allton et al, hep-lat/ F. Karsch, Nucl. Phys. A698, 199c(02). LHC ?RHICSPS

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 12/62 HI - Collision History Plot: R. Stock, arXiv: [nucl-ex].  T c(ritical) : quarks and gluon  hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out  T fo : particle spectra freeze out

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 13/62 Graphik: Max-Plack-Institut für Plasmaphysik Wavelength and Intensity solely determined by temperature T solar = 5500 °C (at the sun’s surface) Solar Spectrum

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 14/62 N     K+K+ K0K0 K-K-      N E = mc 2 (GeV) Teilchenhäufigkeit  Lichtquelle  Teilchenquelle  Häufigkeit von Teilchen am besten beschrieben durch T =  C = 2 Trillionen  C  mal heisser als im Innern der Sonne ! Wie heiss ist die Quelle ?

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 15/62 Chemical Freeze-out Model Hadron resonance ideal gas Compare particle ratios to experimental data Q i : 1 for u and d, -1 for u and d s i : 1 for s, -1 for s g i : spin-isospin freedom m i : particle mass All resonances and unstable particles are decayed Refs. J.Rafelski PLB(1991)333 P. Braun-Munzinger et al., nucl-th/ T ch : Chemical freeze-out temperature  q : light-quark chemical potential  s : strange-quark chemical potential V: volume term, drops out for ratios!  s : strangeness under-saturation factor Density of particle i  B = 3 q  S =  q - s

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Hadron Yield  Ratios 1) At RHIC: T ch = 160 ± 10 MeV  B = 25 ± 5 MeV 2)  S = 1.  The hadronic system is thermalized at RHIC. 3) Short-lived resonances show deviations.  There is life after chemical freeze-out. RHIC white papers , Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger et al. nucl-th/

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 17/62 A. Andronic et al., NPA 772 (2006) 167. With increasing energy: T ch increases and saturates at T ch = 160 MeV Coincides with Hagedorn temperature Coincides with early lattice results  limiting temperature for hadrons, T ch  160 MeV !  B decreases,  B = 1MeV at LHC  Nearly net-baryon free ! Chemical Freeze-Out vs Energy

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 18/62 QCD Phase Diagram

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 19/62 Baryon Ratios Compilation: N. Xu With increasing energy: Baryon ratios approach unity At LHC, pbar / p  0.95  with increasing collision energy, production of matter and anti-matter gets closer

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 20/62 ‘Elementary’ p+p Collisions  Low multiplicities  use canonical ensemble: Strangeness locally conserved!  particle yields are well reproduced  Strangeness not equilibrated ! (  s = 0.5) Statistical Model Fit: F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997).

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 21/62 HI - Collision History Plot: R. Stock, arXiv: [nucl-ex].  T c(ritical) : quarks and gluon  hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV  T fo : particle spectra freeze out

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Collective Flow

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 23/62 Pressure, Flow, … Thermodynamic identity  – entropy p – pressure U – energy V – volume  = k B T, thermal energy per dof In A+A collisions, interactions among constituents and density distribution lead to: pressure gradient  collective flow  number of degrees of freedom (dof)  Equation of State (EOS)  cumulative – partonic + hadronic

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 24/62 Momentum Distributions* 2 ] [(GeV/ 2 c) -1 dy dp N d T   K (dE/dx) p  K (kink) GeV, STAR T th =107±8 [MeV] =0.55±0.08 [c] n=0.65±0.09  2 /dof=106/90 solid lines: fit range Typical mass ordering in inverse slope from light  to heavier  Two-parameter fit describes yields of , K, p,  T th = 90  10 MeV = 0.55  0.08 c  Disentangle collective motion from thermal random walk  K (dE/dx) p  K (kink)

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 25/62 (anti-)Protons From RHIC (anti-)Protons From RHIC More central collisions Centrality dependence: - spectra at low momentum de-populated, become flatter at larger momentum  stronger collective flow in more central coll.! STAR: Phys. Rev. C70, (R).

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 26/62 Thermal Model + Radial Flow Fit Source is assumed to be: –in local thermal equilibration: T fo –boosted in transverse radial direction:  = f(  s ) random boosted E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993)

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 27/62 D-meson collective flow Large collective flow velocity  Spectrum moves to larger momentum

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 28/62 HI - Collision History Plot: R. Stock, arXiv: [nucl-ex].  T c(ritical) : quarks and gluon  hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV  T fo : particle spectra freeze out, T fo  100 MeV : , K, p

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 29/62 1) Multi-strange hadrons  and  freeze-out earlier than ( , K, p)  Collectivity prior to hadronization  Collectivity prior to hadronization 2) Sudden single freeze-out*: Resonance decays lower T fo for ( , K, p)  Collectivity prior to hadronization  Partonic Collectivity ?  Partonic Collectivity ? Kinetic Freeze-out at RHIC STAR Data: Nucl. Phys. A757, ( ), *A. Baran, W. Broniowski and W. Florkowski, Acta. Phys. Polon. B 35 (2004) 779. STAR Preliminary

Anisotropy Parameter v 2 y x pypy pxpx coordinate-space-anisotropy  momentum-space-anisotropy Initial/final conditions, EoS, degrees of freedom

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 31/62 v 2 in the Low-p T Region P. Huovinen, private communications, v 2 approx. linear in p T, mass ordering from light  to heavier  àcharacteristic of hydrodynamic flow ! à sensitive to equation of state

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 32/62 Non-ideal Hydro-dynamics M.Luzum and R. Romatschke, PRC (2008); P. Romatschke, arXiv:  finite shear viscosity  reduces elliptic flow  many caveats, e.g.: - initial eccentricity  (Glauber, CGC, …) - equation of state - hadronic contribution to  /s String theory predicts:  /s > 1/4 

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 33/62 Elliptic Flow vs Collision Energy  Centrality dependence: - initial eccentricity  - overlap area S  Collision energy dep.: - multiplicity density dN ch /dy  in central collisions at RHIC, hydro-limit seems reached ! NA49, Phys. Rev. C68, (2003); STAR, Phys. Rev. C66, (2002); Hydro-calcs.: P. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev.C62, (2000). Glauber initial conditions

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 34/62 v 2 of  and multi-strange   Strange-quark flow - partonic collectivity at RHIC ! QM05 conference: M. Oldenburg; nucl-ex/

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 35/62 Collectivity, Deconfinement at RHIC - v 2, spectra of light hadrons and multi-strange hadrons - scaling with the number of constituent quarks At RHIC, it seems we have:  Partonic Collectivity êDeconfinement  Thermalization ? PHENIX: PRL91, (03) STAR: PRL92, (04) S. Voloshin, NPA715, 379(03) Models: Greco et al, PRC68, (03) X. Dong, et al., Phys. Lett. B597, 328(04). ….

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 36/62 Collectivity  Energy Dependence  Collectivity parameters and increase with collision energy  strong collective expansion at RHIC ! RHIC  0.6  expect strong partonic expansion at LHC, LHC  0.8, T fo  T ch K.S., ISMD07, arXiv: [nucl-ex].

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 37/62 Partonic Collectivity at RHIC 1) Copiously produced hadrons freeze-out ,K,p: T fo = 100 MeV,  T = 0.6 (c) >  T (SPS) 2) Multi-strange hadrons freeze-out: T fo = MeV (~ T ch ),  T = 0.4 (c) 3) Multi-strange v 2 :  and multi-strange hadrons  and  do flow! 4) Model - dependent  /s: (0?), x 1/4  Deconfinement & Partonic (u,d,s) Collectivity !

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Heavy Quarks

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Heavy  flavor: a unique probe X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. m c,b >>  QCD : new scale m c,b  const., m u,d,s ≠ const. initial conditions:  test pQCD,  R,  F probe gluon distribution early partonic stage: diffusion (  ), drag (  ), flow probe thermalization hadronization: chiral symmetry restoration confinement statistical coalescence J/  enhancement / suppression Q2Q2 time

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 40/62 Limitations in PDFs  Most charm created from gluons, e.g. g+g  c + cbar  increasing uncertainties in gluon distribution at smaller Bjorken x:  Assume y=0, p T =0, x 1 =x 2  2 x m charm  3 GeV RHIC (  s=0.2TeV): x = LHC (  s=14TeV): x = 2x10 -4

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 41/62 Heavy  Quark Production (i) Heavy-quarks abundantly produced at LHC energies ! (ii) Large theoretical uncertainties  energy scan (LHC,FAIR) will help ! Plots: R. Vogt,Eur. Phys. J. C, s x (2008). Heavy-quark production at LHC, compared to RHIC expect factors Charm  10 Beauty  100

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 42/62 Heavy  quark Correlations  c-cbar mesons are correlated Pair creation: back to back Gluon splitting: forward Flavor excitation: flat  Exhibits strong correlations !  Baseline at zero: clear measure of vanishing correlations !  probe thermalization among partons ! PYTHIA: p + 14 TeV X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. G. Tsildeakis, H. Appelshäuser, K.S., J. Stachel, arXiv:

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 43/62 How to measure Heavy- Quark Production  e.g., D 0, c  = 123  m  displaced decay vertex is signature of heavy-quark decay  need precise pointing to collision vertex

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 44/62 Heavy  Flavor production at RHIC  large discrepancy between STAR and PHENIX: factor > 2 (!)  need Si-vertex upgrades (> 2011)  large theoretical uncertainties (factor > 10)  Measure charm production at RHIC, LHC, FAIR and provide input to theory: - gluon distribution, - scales  R,  F Plot: J. Dunlop (STAR), QM2009, Open Heavy-flavor in heavy-ion collisions, Calcs: R. Vogt,Eur. Phys. J. C, s x (2008), M. Cacciari, 417th Heraeus Seminar, Bad Honnef (2008).

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 45/62 Where does all the charm go? D0D0 DD DsDs cc J   Total charm cross section: open charm hadrons, e.g. D 0, D *,  c, … or c,b  e(  ) + X  Hidden-charm mesons, e.g. J/  carry ~ 1 % of total charm Statistics plot: H. Yang and Y. Wang, U Heidelberg.

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 46/62 Plot: A. Shabetai D 0   + + K - Reconstruction D 0, c  = 123  m ++ K-K-

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 47/62  Measure secondary decay vertex  Direct reconstruction of D 0  address heavy-quark production with 1 st year of data taking  Many other channels, e.g. D +, D*  Also: single-electrons from heavy-flavor decays Open  Charm Performance ALICE: PPR.vol.II, J. Phys. G 32 (2006) Simulation: 10 9 p+p, 10 8 p+Pb, 10 7 Pb+Pb collisions

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 48/62 D*  meson Identification D* ± analysis: Yifei Wang, Ph.D. thesis, University of Heidelberg, in preparation.  D* +  D 0 +  +  Identify D* + through  M[D* + - D 0 ]  Subtract resonance decay to D 0  Two different methods to address total charm production

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 49/62 Viele neue interessante Signale in ALICE bei LHC: z.B. Hadronen mit schweren Quarks (charm und beauty) D 0, D +, D *, D s, J/  ’,  c   b  

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Quarkonia

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 51/62 Charmonium  Bound state of charm- and anti-charm quark  Hidden-charm meson  m J/  = 3.1 GeV, r J/  = 0.45 fm, m J/  ' = 3.6 GeV, J P = 1 - states  Minimum formation time  = r J/  / c = 0.45 fm  Charm-quark production at time scale t c ~ 1/2m c  0.08 fm  Separation between initial production and hadronization (factorization)

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 52/62 Debye Screening

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 53/62 Quarkonia as a Thermometer  Check for melting of bottomonium (b-bbar) at T deconfined  2 T c  Check for melting of charmonium (c-cbar) at T deconfined  1.2 T c  Absolute numbers model-dependent T fo :

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 54/62 J/  Production  suppression, compared to scaled p+p  regeneration, enhancement Low energy (SPS):few ccbar quarks in the system  suppression of J/  High energy (LHC): many ccbar pairs in the system  enhancement of J/   Signal of de-confinement + thermalization of light quarks ! (SPS) P. Braun-Munzinger and J. Stachel, Nature 448 (2007) 302.

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 55/62 Statistical Hadronization of Charm  large charm production at LHC  strong generation of J/   striking centrality dependence  Signature for QGP formation !  Initial conditions at LHC ?  Need to measure total charm production in PbPb !  Assumes kinetic equilbration of charm !  cc A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 652 (2007) 259.

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 56/62 Charmonium production  In central Pb+Pb collisions at top SPS energy:  J/  ’ to J/  ratio approaches thermal limit  Indicates kinetic equilibration of charm

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 57/62  Examples of the ALICE physics potential - Open charm: D 0  K - +  + (already shown) - Quarkonia: J/ ,  - Global event properties  Will be addressed in first year of pp collisions

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 58/62 First Physics with ALICE  Results from simulations  1 day of data taking  Address: - multiplicity - mean transverse momentum - hadro-chemistry

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 59/62 Charmonia via Di-Electron Measurement electron ID with TPC and TRD expect 2500  mesons per Pb+Pb year with good mass resolution and S/B Simulation: 2·10 8 central PbPb collisions J/   c1  c2 Simulation: pp coll.

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 60/62 Heavy Flavor in Muon Channel muon channel: J/ ,    +  - (2.5 <  < 4) J/  and 2000  initial sample sufficient to study production rates of J/  and  states in muon channel J/    b   b  

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 61/62 LHC: Schedule Nov 2009: 1 st pp collisions very short run at 900 GeV Long run of pp collisions at TeV end of 2010:3 - 4 weeks Pb+Pb collisions at TeV *short technical stop over Christmas period

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 62/62 ALICE  Ready for Physics !