Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:

Slides:



Advertisements
Similar presentations
THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/ cond-mat/
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Competing orders and quantum criticality
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Understanding.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Science 303, 1490 (2004); cond-mat/ cond-mat/
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
The quantum mechanics of two dimensional superfluids
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online: Sachdev

Outline A.“Dimerized” Mott insulators Landau-Ginzburg-Wilson (LGW) theory B.Mott insulators with spin S=1/2 per unit cell Berry phases, bond order, and the breakdown of the LGW paradigm C.Cuprate Superconductors Competing orders and recent experiments

“Dimerized” Mott insulators: Landau-Ginzburg-Wilson (LGW) theory: Second-order phase transitions described by fluctuations of an order parameter associated with a broken symmetry

TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/

TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/

S=1/2 spins on coupled dimers Coupled Dimer Antiferromagnet M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, (1989). N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002).

Weakly coupled dimers Paramagnetic ground state

Weakly coupled dimers Excitation: S=1 triplon

Weakly coupled dimers Excitation: S=1 triplon

Weakly coupled dimers Excitation: S=1 triplon Energy dispersion away from antiferromagnetic wavevector (exciton, spin collective mode)

TlCuCl 3 N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B (2001). “triplon” or spin exciton

S=1/2 spins on coupled dimers Coupled Dimer Antiferromagnet M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, (1989). N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002).

Square lattice antiferromagnet Experimental realization: Ground state has long-range magnetic (Neel or spin density wave) order Excitations: 2 spin waves (magnons)

TlCuCl 3 J. Phys. Soc. Jpn 72, 1026 (2003)

1 Neel state T=0 Pressure in TlCuCl 3 Quantum paramagnet c = (3) M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002) The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) provides a quantitative description of spin excitations in TlCuCl 3 across the quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, Phys. Rev. Lett. 89, (2002))

LGW theory for quantum criticality ~3  Three triplon continuum Triplon pole Structure holds to all orders in u A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

Mott insulators with spin S=1/2 per unit cell: Berry phases, bond order, and the breakdown of the LGW paradigm

Mott insulator with two S=1/2 spins per unit cell

Mott insulator with one S=1/2 spin per unit cell

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange

Mott insulator with one S=1/2 spin per unit cell Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange

Mott insulator with one S=1/2 spin per unit cell

Resonating valence bonds Resonance in benzene leads to a symmetric configuration of valence bonds (F. Kekulé, L. Pauling) The paramagnet on the square lattice should also allow other valence bond pairings, and this implies a “resonating valence bond liquid” with  =0 (P.W. Anderson, 1987)

Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases

Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a Quantum theory for destruction of Neel order

Partition function on cubic lattice Modulus of weights in partition function: those of a classical ferromagnet at “temperature” g Quantum theory for destruction of Neel order

Change in choice of n 0 is like a “gauge transformation” (  a is the oriented area of the spherical triangle formed by n a and the two choices for n 0 ). The area of the triangle is uncertain modulo 4  and the action is invariant under These principles strongly constrain the effective action for A a  which provides description of the large g phase

Simplest large g effective action for the A a  S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). S. Sachdev and K. Park, Annals of Physics 298, 58 (2002).

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

For large e 2, low energy height configurations are in exact one-to- one correspondence with nearest-neighbor valence bond pairings of the sites square lattice There is no roughening transition for three dimensional interfaces, which are smooth for all couplings There is a definite average height of the interface Ground state has bond order. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Smooth interface with average height 3/8 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) 0 0 1/2 1/4 3/4

W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) Smooth interface with average height 5/ /2 1/4 3/4

Smooth interface with average height 7/8 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) 1 1 1/2 5/4 3/4

Smooth interface with average height 1/8 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) 0 0 1/2 1/4 -1/4

“Disordered-flat” interface with average height 1/2 1/2 1/4 3/4 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) 1/4 3/4

“Disordered-flat” interface with average height 3/4 1/2 3/4 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) /4

1/4 -1/4 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) 0 1/ /4 “Disordered-flat” interface with average height 0

1/4 W. Zheng and S. Sachdev, Phys. Rev. B 40, 2704 (1989) 0 “Disordered-flat” interface with average height 1/4 1/2 1/

g 0 ? or

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, (2002) Bond order in a frustrated S=1/2 XY magnet g= First large scale numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry

g 0 ? or

Naïve approach: add bond order parameter to LGW theory “by hand” g g First order transition g

g 0 S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). S. Sachdev and K. Park, Annals of Physics 298, 58 (2002). ? or

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science, March 5, 2004 Theory of a second-order quantum phase transition between Neel and bond-ordered phases Second-order critical point described by emergent fractionalized degrees of freedom (A  and z  ); Order parameters (  and  ) are “composites” and of secondary importance

g Phase diagram of S=1/2 square lattice antiferromagnet T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science, March 5, 2004 or

Cuprate superconductors: Competing orders and recent experiments

g one Main idea: one of the effects of doping mobile carriers is to increase the value of g  States with co-existence of bond order and d-wave superconductivity S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, (2002). Magnetic, bond and super- conducting order La 2 CuO 4 or

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Neutron scattering measurements of La Ba CuO 4 (Zurich oxide) Spin density wave of 8 lattice spacings along the principal square lattice axes Possible microscopic picture Bragg diffraction off static spin order

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Neutron scattering measurements of La Ba CuO 4 (Zurich oxide) Spin density wave of 8 lattice spacings along the principal square lattice axes Possible microscopic picture Bragg diffraction off static spin order with multiple domains

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Neutron scattering measurements of La Ba CuO 4 (Zurich oxide) Spin density wave of 8 lattice spacings along the principal square lattice axes Possible microscopic picture Bragg diffraction off static spin order with multiple domains (after rotation by 45 o )

At higher energies, expect “spin-wave cones”. Only seen at relatively low energies.

Proposal of J. M. Tranquada et al., cond-mat/ High energy spectrum is the triplon excitation of two-leg spin ladders presence of bond order

Proposal of J. M. Tranquada et al., cond-mat/ High energy spectrum is the triplon excitation of two-leg spin ladders presence of bond order

Proposal of J. M. Tranquada et al., cond-mat/ Location of maximum energy excitations Superposition and rotation by 45 degrees High energy spectrum is the triplon excitation of two-leg spin ladders presence of bond order

Computation from isolated 2 leg ladders J. M. Tranquada et al., cond-mat/

La Ba CuO 4 YBa 2 Cu 3 O 6.85

Understanding spectrum at all energies requires coupling between ladders, just past the quantum critical point to the onset of long-range magnetic order M. Vojta and T. Ulbricht, cond-mat/ Use bond-operator method (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) to compute crossover from spin-waves at low energies to triplons at high energies

M. Vojta and T. Ulbricht, cond-mat/ J. M. Tranquada et al., cond-mat/ Possible evidence for spontaneous bond order in a doped cuprate

100Å b 7 pA 0 pA Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Our interpretation: STM evidence for fluctuating spin density/bond order pinned by vortices/impurities A. Polkovnikov, S. Sachdev, M. Vojta, and E. Demler, Int. J. Mod. Phys. B 16, 3156 (2002)

Our interpretation: STM evidence for fluctuating spin density/bond order pinned by vortices/impurities A. Polkovnikov, S. Sachdev, M. Vojta, and E. Demler, Int. J. Mod. Phys. B 16, 3156 (2002) C. Howald, H. Eisaki, N. Kaneko, M. Greven,and A. Kapitulnik, Phys. Rev. B 67, (2003). STM image of LDOS modulations (after filtering in Fourier space) in Bi 2 Sr 2 CaCu 2 O 8+  in zero magnetic field

Our interpretation: STM evidence for fluctuating spin density/bond order pinned by vortices/impurities A. Polkovnikov, S. Sachdev, M. Vojta, and E. Demler, Int. J. Mod. Phys. B 16, 3156 (2002) LDOS of Bi 2 Sr 2 CaCu 2 O 8+  at 100 K. M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science, 12 Feb 2004.

Our interpretation: STM evidence for fluctuating spin density/bond order pinned by vortices/impurities A. Polkovnikov, S. Sachdev, M. Vojta, and E. Demler, Int. J. Mod. Phys. B 16, 3156 (2002) Energy integrated LDOS (between 65 and 150 meV) of strongly underdoped Bi 2 Sr 2 CaCu 2 O 8+  at low temperatures, showing only regions without superconducting “coherence peaks” K. McElroy, D.-H. Lee, J. E. Hoffman, K. M. Lang, J. Lee, E. W. Hudson, H. Eisaki, S. Uchida, and J.C. Davis, cond-mat/0402xxx.

Conclusions I.Theory of quantum phase transitions between magnetically ordered and paramagnetic states of Mott insulators: A. Dimerized Mott insulators: Landau-Ginzburg- Wilson theory of fluctuating magnetic order parameter. B. S=1/2 square lattice: Berry phases induce bond order, and LGW theory breaks down. Critical theory is expressed in terms of emergent fractionalized modes, and the order parameters are secondary. II. Preliminary evidence for spin density/bond orders in superconducting cuprates Conclusions I.Theory of quantum phase transitions between magnetically ordered and paramagnetic states of Mott insulators: A. Dimerized Mott insulators: Landau-Ginzburg- Wilson theory of fluctuating magnetic order parameter. B. S=1/2 square lattice: Berry phases induce bond order, and LGW theory breaks down. Critical theory is expressed in terms of emergent fractionalized modes, and the order parameters are secondary. II. Preliminary evidence for spin density/bond orders in superconducting cuprates