The β Pictoris Heritage 1- IPAG - Institut de Planétologie et Astrophysique de Grenoble 2- LESIA - Observatoire de Paris 3- STSI – Space Telesope Sciente.

Slides:



Advertisements
Similar presentations
Spectro-Polarimetric High-contrast Exoplanet Research
Advertisements

The SPHERE/ZIMPOL polarimeter for extra-solar planetary systems Hans Martin SCHMID, ETH Zurich and many collaborators in the SPHERE consortium IPAG Grenoble,
Standard stars for the ZIMPOL polarimeter
A New for Exoplanet Imaging Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France GAIA-ESF Workshop – November, 5th 2012,
ESO, 27 Nov 09 SPHERE – the high contrast challenge Markus Kasper, ESO 1 1.
High Contrast AO Imaging at the MMT with ARIES SDI Laird Close, Beth Biller, Eric Nielsen Don McCarthy & MMT AO Group (Steward Obs)
Directly Imaging and Characterizing Extrasolar Planets at High Contrast Thayne Currie (U. Toronto, NAOJ Aug 2014!) Adam Burrows (Princeton), Nikku Madhusudhan.
Overview on Extra Solar Planets Rahul I. Patel PHY 599 – Grad Seminar Oct. 18 th 2010.
K2 Kepler’s Second Mission 1 K2 - a 2-wheel Kepler mission; The second highest peak in the world, a worthy ascent Steve B. Howell NASA Ames Research Center.
Meeting of the Blue Dot Team, UCL, London, sept Single Aperture Concepts.
Are Planets in Unresolved Candidates of Debris Disks Stars? R. de la Reza (1), C. Chavero (1), C.A.O. Torres (2) & E. Jilinski (1) ( 1) Observatorio Nacional.
Deriving the true mass of an unresolved BD companion by AO aided astrometry Eva Meyer MPIA, Heidelberg Supervisor: Martin Kürster New Technologies for.
Tim Healy Tony Perry Planet Survey Mission. Introduction Finding Planets Pulsar Timing Astrometry Polarimetry Direct Imaging Transit Method Radial Velocity.
1 Debris Disk Studies with CCAT D. Dowell, J. Carpenter, H. Yorke 2005 October 11.
Anne-Marie Lagrange 1 et al 1 Laboratoire d’Astrophysique de Grenoble, France IAU276 – October, 11, 2010 The candidate companion around  Pictoris.
February 10-11, 2011ANR EXOZODI Kick-Off meeting Transient dynamical events. The FEB hypothesis  Pictoris and Vega Hervé Beust Institut de Planétologie.
Unveiling the formation of the Galactic disks and Andromeda halo with WFMOS Masashi Chiba (Tohoku University, Sendai)
Planets around Low-Mass Stars and Brown Dwarfs Michael Liu Bruce Macintosh NGAO Workshop, Sept 2006.
HST - AO - Coronography Exoplanets and circumstellar disks: Past and future science G. Duchêne (Obs. Grenoble)
Searching for Extrasolar Planets with Simultaneous Differential Imaging Eric L. Nielsen, Steward Observatory Michelson Fellow Symposium, Pasadena 2005.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
TIGER The TIGER Instrument Overview Phil Hinz - PI July 13, 2010.
From Brown Dwarfs to Giant Planets Stan Metchev (Stony Brook Astronomy Group) Stan Metchev (Stony Brook Astronomy Group) Artist’s rendition of a brown.
Circumstellar disk imaging with WFIRST: not just for wide field surveys any more... Tom Greene (NASA ARC) & WFIRST Coronagraph Team AAS / WFIRST Session.
« Debris » discs A crash course in numerical methods Philippe Thébault Paris Observatory/Stockholm Observatory.
„We are not talking about cosmology...“ (A. Sozzetti)
ExoPlanet Imaging Coronagraph: ExoPIC Macintosh, Traub, Kasdin, Greene, Breckinridge, Staplefeldt, Marcy, Savransky, et al.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Young Brown Dwarfs & Giant Planets: Recent Observations and Model Updates By Michael McElwain UCLA Journal Club February 7, 2006.
Formation of Planetary System Extra-solar planetary systems Lecture 16.
Direct Imaging of Exoplanets
A Systematic Search and Characterization of Dusty Debris Disks M. McElwain, B. Zuckerman (UCLA) Joseph H. Rhee, & I. Song (Gemini Obs.) Photo Credit: T.
RAS E-ELT meeting 9th May 08 Fraser Clarke Towards EPICS; high contrast spectroscopy Fraser Clarke N Thatte, G Salter, M Tecza C Verinaud, M Kasper (EPICS.
A young massive planet in a star-disk system Setiawan, Henning, Launhardt et al. January 2008, Nature Letter 451 ESO Journal Club – January 2008.
1 The Precision Radial Velocity Spectrometer Science Case.
Olivier Absil Chargé de Recherches FNRS AEOS group 3 rd ARC meeting – March 4 th, 2011 Imaging faint companions with interferometric closure phases 3 rd.
1 A. Boccaletti Pasadena, Sept th Imaging EGPs with JWST/MIRI and VLT/SPHERE valuable experiences for TPF-C A. Boccaletti, P. Baudoz D. Rouan + coronagraphic.
From NAOS to the future SPHERE Extreme AO system T. Fusco 1, G. Rousset 1,2, J.-L. Beuzit 3, D. Mouillet 3, A.-M. Lagrange 3, P. Puget 2 and many others.
1 An emerging field: Molecules in Extrasolar Planets Jean Schneider - Paris Observatory ● Concepts and Methods ● First results ● Future perspectives.
NICMOS & VLT Imaging of 2MASSWJ (aka 2M1207) A Planetary-Mass Companion to a Young Brown Dwarf Glenn Schneider (Steward Observatory, U.
Eric Pantin, Jean Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratton, D. Stam et al. Polarimetry and spectral imaging of mature Jupiter and super-Earth.
The Approved AP “Young stars in the field of the Open Cluster Dolidze 25”:observational requirements, feasibility,expectations Vincenzo Ripepi INAF-Osservatorio.
Molecules in the atmosphere of extrasolar planets, Paris, nov Direct Imaging of Extrasolar Planets Overview of Ground & Space Programs Anthony.
Hubble Space Telescope Coronagraphs John Krist JPL.
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
Exoplanets: direct detection ASTR 1420 Lecture 17 Sections 11.2.
Discriminating Planetary Migration Mechanisms by Direct Imaging Norio Narita National Astronomical Observatory of Japan on behalf of SEEDS/HiCIAO/AO188.
AO4ELT, Paris, 23 June 2009 EPICS, exoplanet imaging with the E-ELT Markus Kasper, Jean-Luc Beuzit, Christophe Verinaud, Emmanuel Aller- Carpentier, Pierre.
Direct imaging of substellar objects around young and nearby stars: The SACY sample N. Huélamo (Laeff-INTA, Spain) H. Bouy (UC Berkeley) C. Torres (LNA,
October 20, 2005 Nearly Resolved Debris Disks STScI, Baltimore Hervé Beust Laboratoire d’Astrophysique de Grenoble, France FOST group The origin of the.
WHY THERE ARE APPARENTLY SO FEW DEBRIS DISKS AMONG POST- T TAURI STARS ? R. de la Reza (1), R. Almeida (1), I. Oliveira (1), P. Bourget (1), C.A.O. Torres.
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
Early science on exoplanets with Gaia A. Mora 1, L.M. Sarro 2, S. Els 3, R. Kohley 1 1 ESA-ESAC Gaia SOC. Madrid. Spain 2 UNED. Artificial Intelligence.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
( 1: Kobe University, 2: Nagoya University, 3: NAOJ) ☆ Abstract ☆ We obtained a high spatial resolution (FWHM ~ 0.1”) near-infrared image of XZ Tau, a.
JWST NIRCam GTO meeting 8-10 June 2014, Zurich NIRISS GTO Planemos in star-forming regions David Lafrenière and the NIRISS team October 20, 2015.
Design Considerations for Directly Imaging Earth-like Exoplanets
C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon.
Pathways, Barcelona, 16 Sep 2009 EPICS, exoplanet imaging with the E-ELT Raffaele G. Gratton, Markus Kasper (PI), Jean-Luc Beuzit, Christophe Verinaud,
A Spitzer Survey of Dusty Disks in Scorpius-Centaurus Christine H. Chen (STScI) M. Bitner (STScI), E. Mamajek (Rochester), Marc Pecaut (Rochester), K.
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
Companion Candidates around Transiting Planetary Systems: SEEDS First/Second Year Results Norio Narita (NAOJ) Yasuhiro H. Takahashi (Univ. of Tokyo) and.
ACS Multiband Coronagraphic Imaging of the Debris Disk around ß Pictoris David Golimowski STScI/NRDD 19 Oct 2005.
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
Page 1 Lecture 16 Extreme Adaptive Optics: Exoplanets and Protoplanetary Disks Claire Max AY 289 March 7, 2016 Based in part on slides from Bruce Macintosh.
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
The primordial binary population in Sco OB2
Polarizing Coronagraph for Circumstellar Dust Observations
Observing Very Young Stars with GPI
Modern Observational/Instrumentation Techniques Astronomy 500
Presentation transcript:

The β Pictoris Heritage 1- IPAG - Institut de Planétologie et Astrophysique de Grenoble 2- LESIA - Observatoire de Paris 3- STSI – Space Telesope Sciente Institute 4- ESO – European Southern Observatory ESO 30’ Talk, Friday 10, 2010 – ESO/Santiago Gaël Chauvin Anne-Marie Lagrange 1, Mickael Bonnefoy 1, Anthony Boccaletti 2, David Mouillet 1, David Ehrenreich 1, Daniel Apai 3, Daniel Rouan 2, Damien Gratadour 2, Markus Kasper 4 & Julien Girard 4

Outline The β Pictoris Heritage I- Introduction to β Pictoris Young nearby association, star & debris-disk II- Technics & NaCo Imaging Challenge, evolution, limitations & observations III- The β Pic b Giant Planet Detection, recovery, characterization & origin IV- Perspectives

I- Introduction The young, nearby association Member of the young, nearby β Pictoris association Co-moving group, (U,V,W) = (0.3, -11.5, -2.5) km.s-1 Age diagnostics (12 Myr), Isochrones, Li, Hα and X-ray Now, up to 30 members Prime targets for giant planet Imaging, as young EGPs are hotter and brighter at young ages. Zuckerman et al. (2001); Torres et al. (2006)

I- Introduction Formation scenario Galactic space position and motion closely related to Sco-Cen & its 2 sub-groups: LCC and UCL Common dynamical evolution Sequence of successive episodes of triggered star formation: BPMG, TWA, and η & ε Cha Joint action of expanding shells and SN events Dynamical age = Myr Ortega et al. (2002, 2009)

I- Introduction Bright Southern Source V = 3.86; K = 3.5, L’ = 3.5 Spectral type A5V Mass = 1.75 Msun d = 19.3 pc Age (Myrs) = 12 Myrs Fe/H : IR excess detected by IRAS 1984: First use of a stellar Coronograph (after Lyot). > Detection of a circumstellar disk β Pictoris: The star Smith &Terrile (1984)

I- Introduction The debris-disk around β Pictoris Re-processed dust (small grains) Large variety of structures: - Main disk (PA = 31.4 o ) - Inner warp (PA = 35.6 o ) - Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU) ESO3.6m - ADONIS/SHARP (H, FoV 12.5”) Mouillet al. 97 Mouillet et al. 97; Heap et al. 00 Augereau et al. 01; Okamoto et al. 04 Golimowki et al. 06; Freistetter et al. 07

I- Introduction The debris-disk around β Pictoris HST/STIS, Heap et al. 00 HST/ACS, Golimowski et al. 06 Re-processed dust (small grains) Large variety of structures: - Main disk (PA = 31.4 o ) - Inner warp (PA = 35.6 o ) - Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU)

I- Introduction The debris-disk around β Pictoris Re-processed dust (small grains) Large variety of structures: - Main disk (PA = 31.4 o ) - Inner warp (PA = 35.6 o ) - Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU) Falling evaporating bodies, Observed in spectroscopic lines Explained by the presence of one or several planets of 2, 0.5 and 0.1 Mjup at 12, 25 and 44 AU, resp. Beust & Morbidelli 00

I- Introduction The debris-disk around β Pictoris Re-processed dust (small grains) Large variety of structures: - Main disk (PA = 31.4 o ) - Inner warp (PA = 35.6 o ) - Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU) Falling evaporating bodies, Observed in spectroscopic lines Explained by the presence of one or several planets of 2, 0.5 and 0.1 Mjup at 12, 25 and 44 AU, resp. Freistetter et al. (2007)

Outline The β Pictoris Heritage I- Introduction to β Pictoris Young nearby association, star & debris-disk II- Technics & NaCo Imaging Challenge, evolution, limitations & observations III- The β Pic b Giant Planet Detection, recovery, characterization & origin IV- Perspectives

Why Imaging? II- Techniques

Detect/characterize something faint, angularly close to something bright Imaging: an observing challenge! II- Techniques  High image quality - High angular resolution, PSF Stability - Calibration of static aberrations  Stellar Halo Brightness ‏ - Halo attenuation/PSF subtraction - Speckle noise  Intrinsic companion faintness - Long overall observations HIP95270 (Tuc-Hor) VLT/NaCo H, 10” by 10” (?)

ESO3.6m/Come-On+ SH WFS; 62 actuators; Sr = 40-50% Neuhäuser et al 05 Sr < 10% Janson et al. 07‏  GQ lup star (K7V; V=11.4; K=7.1) VLT/NACO Impressive evolution High Angular Resolution II- Techniques VLT/NACO SH WFS; 185 actuators Sr > 90% 2012 – SPHERE SH WFS; 1700 actuators

The art of PSF subtraction II- Techniques β Pictoris, ADI-L’, T obs = 60min FoV = 2.5” by 2.5”, Field Rot. ~ 60deg High Contrast at inner angles  Main limitation (< ’’): Atmospheric & instrumental speckles  Coronagraphy - Occulting and Lyot-pupil mask - 4QP Mask, Boccaletti et al new concepts: PIAAC, ALC, APC, Vortex.  Differential Imaging - PSF-reference (RDI) - Spectral (SDI), Close et al Polarimetric (PDI) - Angular (ADI), Marois et al. 06  Post-processing tools - LOCI, Lafrenière et al ANDROMEDA, Mugnier et al. 10

NaCo high-contrast upgrades II- Techniques 2001, Nov: NaCo First-lights! 2004: Aladdin Detector upgrade 2005: Simultaneous differential Imaging mode 2006: 4QPM coronagraph 2008: Pupil-tracking upgrade 2010: APP, apodized pupil plane 2011: APP-Spec, Vortex, DAM… NaCo/Yepun-Nasmyth B

ADI: Photometry & astrometry II- Techniques Need for adapted tools,  Local insertion of fake-negative planets to recover astrometry & photometry

Outline The β Pictoris Heritage I- Introduction to β Pictoris Young nearby association, star & debris-disk II- Technics & NaCo Imaging Challenge, evolution, limitations & observations III- The β Pic b Giant Planet Detection, recovery, characterization & origin IV- Perspectives

NaCo observing campaigns UT DateESO-programFT/PTmodebandRemark 2002 Nov C-0565FTCORH,Kdisk detection 2003 Nov C-0624FTIMSATL’planet detection 2008 Nov C-713FTIMSATL’no detection 2009 Feb 11, C-5037FTIMSATL’no detection 2009 Oct C-0207FTIMSATL’recovery 2009 Nov 25, C-0396FTIMSATL’ Dec 26, C-0739PTIMSATL’ Mar C-5057PTIMSATKs Apr C-5057PTIMSATKs Apr C-5057PTAPPNB Sep C-0277PTIMSATL’ Nov 14, C-0341PTIMSATL’, Ks- III- Results

Planetary Candidate Detection III- Results GTO-2003 observations Nov 10, 11 and 13, 2003 Field-Tracking observation Reference at same parall. angle 2008, A.-M. Lagrange re-analysis 1 st analysis: Sky-subtraction problem Planet candidate detection! ΔL’ = 7.7 mag Sep = mas Fake-planet simulations Redetection in all 3 nights If planet: 8-9 Mjup at proj. dist. of 8 AU Related to the 1981 Bpic transit? Lecavelier Des Etangs et al. 09 Nov 2003 (NaCo-L’) 500 mas

Early-2009 Non-detection III- Results Follow-up early-2009 campaign Jan and Feb 2009 Field-Tracking observation Reference at same parall. angle No re-detection down to 6.5 AU Constrain on the orbital properties: a, e, ω… most probable solution: - e < 0.1; a= 8-9 AU, - Larger a still possible (> 17 AU), - after quadrature, - Assuming prograde rotation Lagrange et al. 09b; Fitzgerald et al. 09; Olofsson 01

III- Results Transit 81 Detection 03 Non-Detection 09 quadrature 17.1 AU 52.8 yrs 8.1 AU 17.2 yrs Early-2009 Non-detection Follow-up early-2009 campaign Jan and Feb 2009 Field-Tracking observation Reference at same parall. angle No re-detection down to 6.5 AU Constrain on the orbital properties: a, e, ω… most probable solution: - e < 0.1; a= 8-9 AU, - Larger a still possible (> 17 AU), - after quadrature, - Assuming prograde rotation Lagrange et al. 09b; Fitzgerald et al. 09; Olofsson 01

III- Results Nov 2003Oct mas Follow-up late-2009 campaign Oct Field-Tracking observation Reference at same parall. angle Re-detection on the SW part ΔL’ = mag Sep = mas Candidate Confirmed as a bound companion P = yrs a = AU e < 0.05; i ~ 90 deg PA = deg > Main Disks/Warp? β Pictoris b Recovery

III- Results Additional confirmation & characterization NaCo APP NB4.05-imaging Observation: 10 Apr, 2010 ΔNB4.05 = mag Sep = mas Quanz et al. 10 NaCo Ks-imaging Observation: 20 March, 2010 ΔKs = mag Sep = mas Bonnefoy et al. 10, submitted Mar 2010 (NaCo-Ks)

III- Results Additional confirmation & characterization NaCo APP NB4.05-imaging Observation: 10 Apr, 2010 ΔNB4.05 = mag Sep = mas Quanz et al. 10 NaCo Ks-imaging Observation: 20 March, 2010 ΔKs = mag Sep = mas Bonnefoy et al. 10, submitted (K- L’) = Red and dusty atmosphere Field dwarfs: SpT = [L2 – T0]

III- Results Additional confirmation & characterization NaCo APP NB4.05-imaging Observation: 10 Apr, 2010 ΔNB4.05 = mag Sep = mas Quanz et al. 10 NaCo Ks-imaging Observation: 20 March, 2010 ΔKs = mag Sep = mas Bonnefoy et al. 10, submitted (K- L’) = Red and dusty atmosphere Teff = K; logg = [ ]

Mass determination? Cold start Hot start. RV + Disk dynamics: M < 20 Mjup. Evolutionary model predictions: - Companion KL’ photometry - β Pictoris: 19.3pc and 12 Myr > “Hot-start”: 8-9 Mjup (Baraffe et al. 03) > “Cold start”: BD-stellar masses (Marley et al. 07) “Cold start”’ models failed to reproduce β Pic b luminosity, i.e the energy release during the Gas accretion shock. β Pic b Predicted Mass & Origin III- Results

Core Accretion does not work at > AU > Core or Disk fragmentation ? (Dodson –Robinson et al. 09; Boley et al. 09) Inner limit to the Core or Disk fragmentation? β Pictoris b: serious candidate for a formation mechanism via CA Origin III- Results

Outline The β Pictoris Heritage I- Introduction to β Pictoris Young nearby association, star & debris-disk II- Technics & NaCo campaigns Challenge, evolution, limitations & observations III- The β Pic b Giant Planet Detection, recovery, characterization & origin IV- Perspectives

- PerspectivesIV- Perspectives candidate confirmed, characterized (different modes, teams & bands) > waiting for confirmation from other facilities (Gemini, Keck). Follow-up and refinement of the Orbital properties. Inside the main disk or in the warp? Dynamical Implication?. Spectral Characterization: - add. Photometry, spectroscopy, - Atmosphere properties, impact of low-gravity atmosphere. Use of Complementary techniques: - RV-HARPS, ok but active-star - VLTI/PIONIER, CP precision? - Astrometry (GAIA) and Transit, > dynamical mass for evolutionary model calibration!. Search for Giant planets c and d!. VLT/SPHERE (early-2012): Prime target for the Science Verification!