Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.

Slides:



Advertisements
Similar presentations
1 生物計算期末作業 暨南大學資訊工程系 2003/05/13. 2 compare f1 f2  只比較兩個檔案 f1 與 f2 ,比完後將結果輸出。 compare directory  以兩兩比對的方式,比對一個目錄下所有檔案的相 似程度。  將相似度很高的檔案做成報表輸出,報表中至少要.
Advertisements

Chapter Four Parameter Estimation and Statistical Inference.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
第六章 積分方法 課程目標 基本積分公式 代換積分法 部分積分法 積分表法 瑕積分 數值積分法.
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
1 Q10276: Hanoi Tower Troubles Again! 星級 : ★★★ 題組: Online-judge.uva.es PROBLEM SET Volume CII 題號: Q10276: Hanoi Tower Troubles Again! 解題者:薛祖淵 解題日期: 2006.
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
3Com Switch 4500 切VLAN教學.
Reference, primitive, call by XXX 必也正名乎 誌謝 : 部份文字取於前輩 TAHO 的文章.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
第四章 評價股票選擇權的數值方法 蒙地卡羅模擬與二項式模型 財務工程 呂瑞秋著.
Lecture 8 Median and Order Statistics. Median and Order Statistics2 Order Statistics 問題敘述 在 n 個元素中,找出其中第 i 小的元素。 i = 1 ,即為找最小值。 i = n ,即為找最大值。 i = 或 ,即為找中位數。
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
: Matrix Decompressing ★★★★☆ 題組: Contest Volumes with Online Judge 題號: 11082: Matrix Decompressing 解題者:蔡權昱、劉洙愷 解題日期: 2008 年 4 月 18 日 題意:假設有一矩陣 R*C,
第 4 章 迴歸的同步推論與其他主題.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
第一章 演算法:效率、分析與量級 1.1演算法 1.2發展有效率演算法的重要性 1.3演算法的分析 1.4量級(Order)
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
信度.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
Monte Carlo Simulation Part.1 Dept. Phys., Tunghai Univ. Numerical Methods, C. T. Shih.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
公司加入市場的決定. 定義  平均成本 = 總成本 ÷ 生產數量 = 每一單位產量所耗的成本  平均固定成本 = 總固定成本 ÷ 生產數量  平均變動成本 = 總變動成本 ÷ 生產數量.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
資料結構實習-一 參數傳遞.
公用品.  該物品的數量不會因一人的消費而受到 影響,它可以同時地被多人享用。 角色分配  兩位同學當我的助手,負責:  其餘各人是投資者,每人擁有 $100 , 可以投資在兩種資產上。  記錄  計算  協助同學討論.
: Problem G e-Coins ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10306: Problem G e-Coins 解題者:陳瀅文 解題日期: 2006 年 5 月 2 日 題意:給定一個正整數 S (0
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
: GCD - Extreme II ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11426: GCD - Extreme II 解題者:蔡宗翰 解題日期: 2008 年 9 月 19 日 題意: 最多 20,000 組測資,題目會給一個數字.
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
: Expect the Expected ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11427: Expect the Expected 解題者:李重儀 解題日期: 2008 年 9 月 21 日 題意:玩一種遊戲 (a game.
-Antidifferentiation- Chapter 6 朝陽科技大學 資訊管理系 李麗華 教授.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Learning Method in Multilingual Speech Recognition Author : Hui Lin, Li Deng, Jasha Droppo Professor: 陳嘉平 Reporter: 許峰閤.
Chapter 10 m-way 搜尋樹與B-Tree
演算法課程 (Algorithms) 國立聯合大學 資訊管理學系 陳士杰老師 Course 7 貪婪法則 Greedy Approach.
JAVA 程式設計與資料結構 第十六章 Hash Tables. Introduction Hash Tables 結構為一個 Array ,稱之為 Bucket array 。 如果想要新增一個物件,要根據這個物件的特性 將其加入 Hash Table 內。 Bucket Array 用 A 來代替,其.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
Cluster Analysis 目的 – 將資料分成幾個相異性最大的群組 基本問題 – 如何衡量事務之間的相似性 – 如何將相似的資料歸入同一群組 – 如何解釋群組的特性.
連續隨機變數 連續變數:時間、分數、重量、……
第八章 估計.
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
: Wine trading in Gergovia ★★☆☆☆ 題組: Contest Volumes with Online Judge 題號: 11054: Wine trading in Gergovia 解題者:劉洙愷 解題日期: 2008 年 2 月 29 日 題意:在 Gergovia.
:Commandos ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 11463: Commandos 解題者:李重儀 解題日期: 2008 年 8 月 11 日 題意: 題目會給你一個敵營區內總共的建築物數,以及建築物 之間可以互通的路有哪些,並給你起點的建築物和終點.
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
計數值抽樣計劃 使用 MIL-105D 表. 表 10-1 Sample Sizes Code Letters.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
幼兒行為觀察與記錄 第八章 事件取樣法.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Slide Slide 第 9 章 假設檢定 Part B ( ). 2 Slide Slide 第 9 章 假設檢定 Part B  9.5 母體比例  9.6 假設檢定與決策  9.7 計算型 II 錯誤的機率  9.8 在檢定母體平均數時決定樣本大小 第 9 章假設檢定.
1 Chap. 7 Response of First-Order RL and RC Circuits Contents 7.1 The Natural Response of an RL Circuit 7.2 The Natural Response of an RC Circuit 7.3 The.
Presentation transcript:

Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih

Simple/Importance Sampling 當我們用 MC 法計算積分時,若該函數為常數 函數 f(x)=constant ,則取樣數不管多少,準 確度皆為百分之百 相對的,如果 f(x) 為 delta 函數,則取樣數不 管多少,準確度幾乎皆為零 也就是說,如果在積分區間內, f(x) 為一平滑 函數,則 MC 法較準確,如果 f(x) 的變動很劇 烈,則 MC 法的誤差會變大

Weight Function: w(x) 因此,在 f(x) 變化劇烈時,在以 MC 取樣時, 最好依據 f(x) 的大小來決定取樣機率 亦即: |f(x)| 大的,對 ∫f(x)dx 的貢獻較大,如 果沒有被選中則結果的誤差極大 解決方式:改變 x 被選中的機率,讓 |f(x)| 大 的被選中的機率增加 Weight distribution function: w(x) ,決定每個 x 被選中的機率

Weight Function: w(x) w(x) 必須歸一化,即在積分區間內 ∫w(x)dx=1 由於 x 的選取已被 w(x) 扭曲,所以計算積分 時要把這個部分「還」回去:若一共取樣了 M 個 x ,則其積分值為

Metropolis 演算法 如何產生一連串的 x ,使得 x 的分佈滿足 w(x)? 步驟如 下: 由均勻亂數產生一任意 x , a<x<b 再產生另外一個亂數 x’ , a<x’<b 兩者的機率權重比為 P(x → x’) w(x’)/w(x) 若 P ≧ 1 ,則接受 x’ 為新的 x 值 若 P < 1 ,則產生一亂數 y ,若 y<P ,則接受 x’ 為新的 x ,否則下一個被選取的仍然是舊的 x 如此即可得到一連串的 x ,重複此步驟 M 次,將每次所 得到的 x 所對應的 f(x)/w(x) 求平均,即為所求之積分 近似值

f(x) 與 w(x) 最好的 w(x) 當然就是 |f(x)| 本身,但是因為 w(x) 必須滿足 ∫w(x)dx=1 ,所以得先對 w(x) 做積分 → 回到問題的原點 但是如果 f(x) 是物理上的 probability distribution function (如波茲曼函數),我們 經常要積分的是一些物理量的平均值: 這類問題即可以 Metropolis algorithm 來產生 根據 f(x) 所分佈的 M 個 x