Database Systems: A Practical Approach to Design, Implementation and Management International Computer Science S. Carolyn Begg, Thomas Connolly Lecture.

Slides:



Advertisements
Similar presentations
1 Term 2, 2004, Lecture 5, Physical DesignMarian Ursu, Department of Computing, Goldsmiths College Physical Design 3.
Advertisements

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
Logical Database Design
Chapter Physical Database Design Methodology Software & Hardware Mapping Logical Design to DBMS Physical Implementation Security Implementation Monitoring.
Chapter 6 Methodology Conceptual Databases Design Transparencies © Pearson Education Limited 1995, 2005.
Physical Database Monitoring and Tuning the Operational System.
1 Methodology : Conceptual Databases Design © Pearson Education Limited 1995, 2005.
Lecture Fourteen Methodology - Conceptual Database Design
Methodology Conceptual Database Design
Modeling & Designing the Database
Chapter 17 Methodology – Physical Database Design for Relational Databases Transparencies © Pearson Education Limited 1995, 2005.
© Pearson Education Limited, Chapter 12 Physical Database Design – Step 3 (Translate Logical Design) Transparencies.
Team Dosen UMN Physical DB Design Connolly Book Chapter 18.
Chapter 14 & 15 Conceptual & Logical Database Design Methodology
CSC271 Database Systems Lecture # 21. Summary: Previous Lecture  Phases of database SDLC  Prototyping (optional)  Implementation  Data conversion.
Overview of the Database Development Process
Chapters 17 & 18 Physical Database Design Methodology.
Practical Database Design and Tuning. Outline  Practical Database Design and Tuning Physical Database Design in Relational Databases An Overview of Database.
CSC271 Database Systems Lecture # 30.
ITEC224 Database Programming
Lecture 9 Methodology – Physical Database Design for Relational Databases.
Chapter 16 Methodology - Conceptual Database Design.
1 Introduction to Database Systems. 2 Database and Database System / A database is a shared collection of logically related data designed to meet the.
Methodology - Conceptual Database Design Transparencies
Software School of Hunan University Database Systems Design Part III Section 5 Design Methodology.
Methodology Conceptual Databases Design
9/14/2012ISC329 Isabelle Bichindaritz1 Database System Life Cycle.
CSCI 3140 Module 2 – Conceptual Database Design Theodore Chiasson Dalhousie University.
1 Chapter 15 Methodology Conceptual Databases Design Transparencies Last Updated: April 2011 By M. Arief
Physical Database Design Chapter 6. Physical Design and implementation 1.Translate global logical data model for target DBMS  1.1Design base relations.
Chapter 16 Methodology – Physical Database Design for Relational Databases.
Physical Database Design
CSC271 Database Systems Lecture # 29. Summary: Previous Lecture  The normalization process  1NF, 2NF, 3NF  Inference rules for FDs  BCNF.
1 Index Structures. 2 Chapter : Objectives Types of Single-level Ordered Indexes Primary Indexes Clustering Indexes Secondary Indexes Multilevel Indexes.
Methodology - Conceptual Database Design. 2 Design Methodology u Structured approach that uses procedures, techniques, tools, and documentation aids to.
CSCI 3140 Module 3 – Logical Database Design for the Relational Model Theodore Chiasson Dalhousie University.
1/26/2004TCSS545A Isabelle Bichindaritz1 Database Management Systems Design Methodology.
Methodology: Conceptual Databases Design
DATABASE MGMT SYSTEM (BCS 1423) Chapter 5: Methodology – Conceptual Database Design.
Team Dosen UMN Database Design Connolly Book Chapter
© Pearson Education Limited, Chapter 9 Logical database design – Step 1 Transparencies.
Conceptual Database Design
© Pearson Education Limited, Chapter 13 Physical Database Design – Step 4 (Choose File Organizations and Indexes) Transparencies.
10/10/2012ISC239 Isabelle Bichindaritz1 Physical Database Design.
Physical Database Design Transparencies. ©Pearson Education 2009 Chapter 11 - Objectives Purpose of physical database design. How to map the logical database.
Chapter 8 Methodology - Conceptual Database Design Chapter 15 in Textbook.
Methodology - Conceptual Database Design
Part4 Methodology of Database Design Chapter 07- Overview of Conceptual Database Design Lu Wei College of Software and Microelectronics Northwestern Polytechnical.
Methodology – Physical Database Design for Relational Databases.
University of Sunderland COM 220 Lecture Ten Slide 1 Database Performance.
Modelling Methodologies Chapter 16, 17, 18. Modeling Methodologies2 Database Design Physical DB design Logical DB design Conceptual DB design Hardware.
Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall Chapter 9 Designing Databases 9.1.
B. Information Technology (Hons.) CMPB245: Database Design Physical Design.
April 20022/CS/3X1 Database Design Design method John Wordsworth Department of Computer Science The University of Reading Room.
10/3/2017 Chapter 6 Index Structures.
Practical Database Design and Tuning
Methodology Conceptual Databases Design
Indexes By Adrienne Watt.
Record Storage, File Organization, and Indexes
Methodology Conceptual Database Design
Methodology – Physical Database Design for Relational Databases
Methodology – Monitoring and Tuning the Operational System
Physical Database Design for Relational Databases Step 3 – Step 8
國立臺北科技大學 課程:資料庫系統 fall Chapter 18
Conceptual Database Design
Practical Database Design and Tuning
Methodology – Monitoring and Tuning the Operational System
Methodology Conceptual Databases Design
Presentation transcript:

Database Systems: A Practical Approach to Design, Implementation and Management International Computer Science S. Carolyn Begg, Thomas Connolly Lecture Sixteen Methodology – Physical Database Design for Relational Databases Based on Chapter Sixteen of this book:

2 Lecture 16 - Objectives u Purpose of physical database design. u How to map the logical database design to a physical database design. u How to design base relations for target DBMS. u How to design enterprise constraints for target DBMS.

3 Lecture 16 - Objectives u How to select appropriate file organizations based on analysis of transactions. u When to use secondary indexes to improve performance. u How to estimate the size of the database. u How to design user views. u How to design security mechanisms to satisfy user requirements.

4 Comparison of Logical and Physical Database Design u Sources of information for physical design process includes global logical data model and documentation that describes model. u Logical database design is concerned with the what, physical database design is concerned with the how.

5 Physical Database Design Process of producing a description of the implementation of the database on secondary storage; it describes the base relations, file organizations, and indexes used to achieve efficient access to the data, and any associated integrity constraints and security measures.

6 Overview of Physical Database Design Methodology u Step 4 Translate global logical data model for target DBMS –Step 4.1 Design base relations –Step 4.2 Design representation of derived data –Step 4.3 Design enterprise constraints

7 Overview of Physical Database Design Methodology u Step 5 Design physical representation –Step 5.1 Analyze transactions –Step 5.2 Choose file organizations –Step 5.3 Choose indexes –Step 5.4 Estimate disk space requirements

8 Overview of Physical Database Design Methodology u Step 6 Design user views u Step 7 Design security mechanisms u Step 8 Consider the introduction of controlled redundancy u Step 9 Monitor and tune the operational system

9 Step 4 Translate global logical data model for target DBMS To produce a relational database schema that can be implemented in the target DBMS from the global logical data model. u Need to know functionality of target DBMS such as how to create base relations and whether the system supports the definition of: –PKs, FKs, and AKs; –required data - ie. whether system supports NOT NULL –domains; –relational integrity constraints; –enterprise constraints.

10 Step 4.1 Design Base Relations To decide how to represent base relations identified in global logical data model in target DBMS. u For each relation need to define: –the name of the relation; –a list of simple attributes in brackets; –the PK and, where appropriate, AKs and FKs. –a list of any derived attributes and how they should be computed; –referential integrity constraints for any FKs identified.

11 Step 4.1 Design Base Relations u For each attribute need to define: –its domain, consisting of a data type, length, and any constraints on the domain; –an optional default value for the attribute; –whether the attribute can hold nulls.

12 DBDL for the PropertyForRent relation

13 Step 4.2 Design Representation of Derived Data To decide how to represent any derived data present in the global logical data model in the target DBMS. u Examine logical data model and data dictionary, and produce list of all derived attributes. u Derived attribute can be stored in database or calculated every time it is needed.

14 Step 4.2 Design Representation of Derived Data u Option selected is based on: –additional cost to store the derived data and keep it consistent with operational data from which it is derived; –cost to calculate it each time it is required. u Less expensive option is chosen subject to performance constraints.

15 PropertyforRent relation and Staff relation with derived attribute noOfProperties

16 Step 4.3 Design Enterprise Constraints To design the enterprise constraints for the target DBMS. u Some DBMS provide more facilities than others for defining enterprise constraints. Example: CONSTRAINT StaffNotHandlingTooMuch CHECK (NOT EXISTS (SELECT staffNo FROM PropertyForRent GROUP BY staffNo HAVING COUNT(*) > 100))

17 Overview of Physical Database Design Methodology u Step 5 Design physical representation –Step 5.1 Analyze transactions –Step 5.2 Choose file organizations –Step 5.3 Choose indexes –Step 5.4 Estimate disk space requirements

18 Step 5 Design Physical Representation To determine optimal file organizations to store the base relations and the indexes that are required to achieve acceptable performance; that is, the way in which relations and tuples will be held on secondary storage.

19 Step 5 Design Physical Representation u Number of factors that may be used to measure efficiency: -Transaction throughput: number of transactions processed in given time interval. -Response time: elapsed time for completion of a single transaction. -Disk storage: amount of disk space required to store database files. u However, no one factor is always correct. Typically, have to trade one factor off against another to achieve a reasonable balance.

20 Step 5.1 Analyze Transactions To understand the functionality of the transactions that will run on the database and to analyze the important transactions. u Attempt to identify performance criteria, such as: –transactions that run frequently and will have a significant impact on performance; –transactions that are critical to the business; –times during the day/week when there will be a high demand made on the database (called the peak load).

21 Step 5.1 Analyze Transactions u Use this information to identify the parts of the database that may cause performance problems. u To select appropriate file organizations and indexes, also need to know high-level functionality of the transactions, such as: –attributes that are updated in an update transaction –criteria used to restrict tuples that are retrieved in a query.

22 Step 5.1 Analyze Transactions u Often not possible to analyze all expected transactions, so investigate most ‘important’ ones. u To help identify which transactions to investigate, can use: –transaction/relation cross-reference matrix, showing relations that each transaction accesses, and/or –transaction usage map, indicating which relations are potentially heavily used.

23 Step 5.1 Analyze Transactions u To focus on areas that may be problematic: (1) Map all transaction paths to relations. (2) Determine which relations are most frequently accessed by transactions. (3) Analyze the data usage of selected transactions that involve these relations.

24 Cross-referencing transactions and relations

25 Transaction usage map for some sample transactions showing expected occurrences

26 Example transaction analysis form

27 Step 5.2 Choose File Organizations To determine an efficient file organization for each base relation. u File organizations include Heap, Hash, Indexed Sequential Access Method (ISAM), B+-Tree, and Clusters.

28 Step 5.3 Choose Indexes To determine whether adding indexes will improve the performance of the system. u One approach is to keep tuples unordered and create as many secondary indexes as necessary.

29 Step 5.3 Choose Indexes u Another approach is to order tuples in the relation by specifying a primary or clustering index. u In this case, choose the attribute for ordering or clustering the tuples as: –attribute that is used most often for join operations - this makes join operation more efficient, or –attribute that is used most often to access the tuples in a relation in order of that attribute.

30 Step 5.3 Choose Indexes u If ordering attribute chosen is key of relation, index will be a primary index; otherwise, index will be a clustering index. u Each relation can only have either a primary index or a clustering index. u Secondary indexes provide a mechanism for specifying an additional key for a base relation that can be used to retrieve data more efficiently.

31 Step 5.3 Choose Indexes u Overhead involved in maintenance and use of secondary indexes that has to be balanced against performance improvement gained when retrieving data. u This includes: –adding an index record to every secondary index whenever tuple is inserted; –updating a secondary index when corresponding tuple is updated; –increase in disk space needed to store the secondary index; –possible performance degradation during query optimization to consider all secondary indexes.

32 Step 5.3 Choose Indexes – Guidelines for choosing ‘wish-list’ (1) Do not index small relations. (2) Index PK of a relation if it is not a key of the file organization. (3) Add secondary index to a FK if it is frequently accessed. (4) Add secondary index to any attribute that is heavily used as a secondary key. (5) Add secondary index on attributes that are involved in: selection or join criteria; ORDER BY; GROUP BY; and other operations involving sorting (such as UNION or DISTINCT).

33 Step 5.3 Choose Indexes – Guidelines for choosing ‘wish-list’ (6) Add secondary index on attributes involved in built-in functions. (7) Add secondary index on attributes that could result in an index-only plan. (8) Avoid indexing an attribute or relation that is frequently updated. (9) Avoid indexing an attribute if the query will retrieve a significant proportion of the tuples in the relation. (10) Avoid indexing attributes that consist of long character strings.

34 Step 5.4 Estimate Disk Space Requirements To estimate the amount of disk space that will be required by the database.

35 Overview of Physical Database Design Methodology u Step 6 Design user views u Step 7 Design security mechanisms

36 Step 6 Design User Views To design the user views that were identified during the Requirements Collection and Analysis stage of the relational database application lifecycle.

37 Step 7 Design Security Measures To design the security measures for the database as specified by the users.