Igor V. Moskalenko NASA Goddard Space Flight Center with Andy W. StrongStepan G. Mashnik Andy W. Strong (MPE, Germany) & Stepan.

Slides:



Advertisements
Similar presentations
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
AMS Discoveries Affecting Cosmic-Ray SIG Priorities Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland AAS HEAD.
Implication of recent cosmic ray data Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Hong Li, Jie Liu, Bing Zhang & Xinmin Zhang.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
The positron excess and supersymmetric dark matter Joakim Edsjö Stockholm University
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.
Igor V. Moskalenko (Stanford) GALPROP Model for Galactic CR propagation and diffuse γ -ray emission.
Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum, Germany Topics to cover: GALPROP: principles, internal structure, recent.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Igor V. Moskalenko (Stanford U.) Challenges in Astrophysics of CR (knee--) & γ-rays Topics covered:  Intro to the relevant physics  Modeling of the CR.
HEAD 2010 – Mar.3, 2010 :: IVM/Stanford-KIPAC 1IVM/Stanford-KIPAC 1 PAMELA Workshop, Rome/May 12, 2009 Igor V. Moskalenko (stanford/kipac) Leptons in Cosmic.
Aspen 4/28/05Physics at the End of the Galactic Cosmic Ray Spectrum - “Below the Knee” Working Group “Below the Knee” Working Group Report - Day 3 Binns,
High-energy electrons, pulsars, and dark matter Martin Pohl.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
38 th COSPAR, Bremen – July 18, 2010 :: IVM/Stanford-KIPAC 1 Galactic Cosmic Rays Igor V. Moskalenko Stanford & KIPAC Igor V. Moskalenko Stanford & KIPAC.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
KIAA-WAP, Peking U 2015/9/28 Implications on CRs and DM from the AMS-02 results Xiao-Jun Bi ( 毕效军 ) Center for Particle and Astrophysics IHEP, Beijing.
Cosmic Rays High Energy Astrophysics
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
E.G.Berezhko, L.T. Ksenofontov Yu.G.Shafer Institute of Cosmophysical Research and Aeronomy Yakutsk, Russia Energy spectra of electrons and positrons,
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Multi-wavelength signals of dark matter annihilations in the Galactic diffuse emission (based on MR and P. Ullio, arXiv: )‏ Marco Regis University.
Direct measurements of cosmic rays in space ROBERTA SPARVOLI ROME “TOR VERGATA” UNIVERSITY AND INFN, ITALY Vulcano Workshop 2014 Vulcano Island (Italy),
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Ching-Yuan Huang (黄庆元) 20 October 2010
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
DARK MATTER Fisica delle Astroparticelle Piergiorgio Picozza a.a
Igor V. Moskalenko (Stanford) with Seth Digel (SLAC) Troy Porter (LSU) Olaf Reimer (Stanford) Olaf Reimer (Stanford) Andrew W. Strong (MPE) Andrew W. Strong.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
11 Geant4 and the Next Generation of Space-Borne Cosmic Ray Experiments Geant4 Space Users Workshop Hiroshima, Japan August, 2015 MS Sabra 1, AF.
ISCRA – Erice July 2004 Ana Sofía Torrentó Coello - CIEMAT THE AMS EXPERIMENT Ana Sofía Torrentó Coello – CIEMAT (Spain) On behalf of AMS Collaboration.
Dark Matter and CHARGED cosmic rays Fiorenza Donato Physics Dept. & INFN - Torino, Italy The International School for AstroParticle Physics (ISAPP) 2013,
Modified from talk of Igor V. Moskalenko (Stanford U.) GALPROP & Modeling the Diffuse  -ray Emission.
Topics on Dark Matter Annihilation
Current work on GALPROP
Dark Matter in Galactic Gamma Rays
Can dark matter annihilation account for the cosmic e+- excesses?
Cosmic-Rays Astrophysics with AMS-02
A large XMM-Newton project on SN 1006
Optimizing Galaxy Simulations using FGST Observations
Splinter section: Diffuse emission
Particle Acceleration in the Universe
A large XMM-Newton project on SN 1006
Testing the origin of high- energy cosmic rays
Propagation of cosmic rays
Isotopic abundances of CR sources
宇宙線スペクトルと GeV-TeV diffuse-g emission
on behalf of the Fermi-LAT Collaboration
Using Z≤2 data to constrain cosmic-ray propagation models
Presentation transcript:

Igor V. Moskalenko NASA Goddard Space Flight Center with Andy W. StrongStepan G. Mashnik Andy W. Strong (MPE, Germany) & Stepan G. Mashnik (LANL) Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays (nuclear physics in cosmic ray studies)

Igor V. Moskalenko/NASA-GSFC 2 Nuclear Data-2004/09/26-10/1Santa Fe, NM All Particle CR Spectrum Energetically SNR – most probable sources of CR: ~5x10 49 erg per SN (1/30 yr -1 ) – 5% of the kinetic energy of the ejecta. CR propagate in the Galaxy for some 10 Myr before escape. Synchrotron radiation of ultra- relativistic electrons: evidence of particle acceleration, but not protons…

Igor V. Moskalenko/NASA-GSFC 3 Nuclear Data-2004/09/26-10/1Santa Fe, NM EGRET Sky: “GeV Excess” The diffuse γ-ray emission is the dominant feature of the γ-ray sky – an evidence of CR interactions in the interstellar medium: bremsstrahlung, IC, π 0 Hunter et al Excess

Igor V. Moskalenko/NASA-GSFC 4 Nuclear Data-2004/09/26-10/1Santa Fe, NM Reacceleration Model: Secondary Pbars B/C ratioAntiproton flux E k, GeV/nucleon E k, GeV

Igor V. Moskalenko/NASA-GSFC 5 Nuclear Data-2004/09/26-10/1Santa Fe, NM Positron Excess ?  Are all the excesses connected somehow ?  A signature of a new physics (DM) ? Caveats:  Systematic errors ?  A local source of primary positrons ?  Large E-losses -> local spectrum… HEAT (Coutu et al. 1999) Leaky-Box GALPROP e + /e E, GeV

Igor V. Moskalenko/NASA-GSFC 6 Nuclear Data-2004/09/26-10/1Santa Fe, NM Propagation of Cosmic Rays: Why? Modeling of the CR propagation and diffuse gamma- ray emission requires to combine many different kinds of data obtained from astrophysical observations, and nuclear and particle physics experiments. Why Do We Need to Study CR Propagation ? In return, a correct model provides a basis for many studies in Astrophysics, Particle Physics, and Cosmology

Igor V. Moskalenko/NASA-GSFC 7 Nuclear Data-2004/09/26-10/1Santa Fe, NM Dark Matter Signatures in CR Diffuse gammasAntiprotons E k, GeVE, GeV Well... But where is the nuclear physics?!

Igor V. Moskalenko/NASA-GSFC 8 Nuclear Data-2004/09/26-10/1Santa Fe, NM CR Propagation: Milky Way Galaxy Halo Gas, sources 100 pc 40 kpc 4-12 kpc /ccm 1-100/ccm Intergalactic space 1 kpc~3x10 18 cm R Band image of NGC GHz continuum (NVSS), 1,2,…64 mJy/ beam Optical image: Cheng et al. 1992, Brinkman et al Radio contours: Condon et al AJ 115, 1693 NGC891 Sun

Igor V. Moskalenko/NASA-GSFC 9 Nuclear Data-2004/09/26-10/1Santa Fe, NM CR Interactions in the Interstellar Medium e + - Sources: SNRs, Shocks, Superbubbles Particle acceleration Photon emission P He CNO X,γ gas BISRF π e P _ LiBeB ISM diffusion energy losses reacceleration convection etc. π 0 synchrotron IC bremss Chandra GLAST ACE BESS Halo disk escape He CNO solar modulation AMS p

Igor V. Moskalenko/NASA-GSFC 10 Nuclear Data-2004/09/26-10/1Santa Fe, NM Heliosphere Flux 20 GeV/n

Igor V. Moskalenko/NASA-GSFC 11 Nuclear Data-2004/09/26-10/1Santa Fe, NM Transport Equation ψ(r,p,t) – ψ(r,p,t) – density per total momentum sources (SNR, nuclear reactions…) convection diffusion diffusive reacceleration E-loss convection fragmentation radioactive decay

Igor V. Moskalenko/NASA-GSFC 12 Nuclear Data-2004/09/26-10/1Santa Fe, NM Elemental Abundances: CR vs. Solar System CR abundances: ACE Solar system abundances LiBeB CNO F Fe ScTiV CrMn Si Cl Al O Volatility Na S

Igor V. Moskalenko/NASA-GSFC 13 Nuclear Data-2004/09/26-10/1Santa Fe, NM Nuclear component in CR: What we can learn? Propagation parameters: Diffusion coeff., halo size, Alfvén speed, convection velosity… Energy markers: Reacceleration, solar modulation Local medium: Local Bubble Material & acceleration sites, nucleosynthesis (r- vs. s-processes) Stable secondaries: Li, Be, B, Sc, Ti, V Radio (t 1/2 ~1 Myr): 10 Be, 26 Al, 36 Cl, 54 Mn K-capture: 37 Ar, 49 V, 51 Cr, 55 Fe, 57 Co Short t 1/2 radio 14 C & heavy Z>30 Heavy Z>30: Cu, Zn, Ga, Ge, Rb Nucleo- synthesis: supernovae, early universe, Big Bang… Solar modulation Extragalactic diffuse γ- rays: blazars, relic neutralino Dark Matter (p,đ,e +,γ) -

Igor V. Moskalenko/NASA-GSFC 14 Nuclear Data-2004/09/26-10/1Santa Fe, NM Fixing Propagation Parameters: Standard Way Using secondary/primary nuclei ratio: Diffusion coefficient and its index Propagation mode and its parameters (e.g., reacceleration V A, convection V z ) Radioactive isotopes: Galactic halo size Z h Z h increase B/C Be 10 /Be 9 Interstellar E k, MeV/nucleon

Igor V. Moskalenko/NASA-GSFC 15 Nuclear Data-2004/09/26-10/1Santa Fe, NM stripping 51 Cr attachment Time scale (years) EC decay E k, MeV/nucleon K-capture isotopes Niebur et al V/ 51 Cr E k, MeV/nucleon 51 V/ 51 Cr ≡ daughter/parent Electron attachment & stripping Solar modulation effect Jones et al V/ 51 Cr E k, MeV/nucleon K-capture & reacceleration ISM

Igor V. Moskalenko/NASA-GSFC 16 Nuclear Data-2004/09/26-10/1Santa Fe, NM First Ionization Potential (FIP) vs. Volatility Low-FIP ~ Refractories Rb, Cs – break the rule Other important elements: Na, Cu, Zn, Ga, Ge, Pb Rb Cs K Pb Ge Ga Na Zn Se Cu ~10 4 K

Igor V. Moskalenko/NASA-GSFC 17 Nuclear Data-2004/09/26-10/1Santa Fe, NM Effect of Cross Sections: Radioactive Secondaries Different size from different ratios… Z halo,kp c ST W 27 Al+p  26 Al Errors in CR measurements (HE & LE)Errors in CR measurements (HE & LE) Errors in production cross sectionsErrors in production cross sections Errors in the lifetime estimatesErrors in the lifetime estimates Different origin of elements (Local Bubble ?)Different origin of elements (Local Bubble ?) nat Si+p  26 Al W ST T 1/2 = ? E k, MeV/nucleon

Igor V. Moskalenko/NASA-GSFC 18 Nuclear Data-2004/09/26-10/1Santa Fe, NM Bigger picture…

Igor V. Moskalenko/NASA-GSFC 19 Nuclear Data-2004/09/26-10/1Santa Fe, NM Matter, Dark Matter, Dark Energy… Ω ≡ ρ/ρ crit Ω tot =1.02 +/−0.02 Ω Matter =4.4%+/−0.4% Ω DM =23% +/−4% Ω Vacuum =73% +/−4% Supersymmetry is a mathematically beautiful theory, and would give rise to a very predictive scenario, if it is not broken in an unknown way which unfortunately introduces a large number of unknown parameters… Lars Bergström (2000) SUSY DM candidate has also other reasons to exist -particle physics…

Igor V. Moskalenko/NASA-GSFC 20 Nuclear Data-2004/09/26-10/1Santa Fe, NM Example “Global Fit:” diffuse γ’s, pbars, positrons  Look at the combined (pbar,e +,γ) data  Possibility of a successful “global fit” can not be excluded -non-trivial !  If successful, it may provide a strong evidence for the SUSY DM pbars e+e+ γ GALPROP/W. de Boer et al. hep-ph/ Supersymmetry:  MSSM  Lightest neutralino χ 0  m χ ≈ GeV  S=½ Majorana particles  χ 0 χ 0 −> p, pbar, e +, e −, γ

Igor V. Moskalenko/NASA-GSFC 21 Nuclear Data-2004/09/26-10/1Santa Fe, NM CR Fluctuations/SNR stochastic events GeV electrons 100 TeV electrons GALPROP/Credit S.Swordy Electron energy losses 10 7 yr 10 6 yr Bremsstrahlung 1 TeV Ionization Coulomb IC, synchrotron 1 GeV Ekin, GeV E(dE/dt) -1,yr Historical variations of CR intensity over yr (Be 10 in South Polar ice) Konstantinov et al. 1990

Igor V. Moskalenko/NASA-GSFC 22 Nuclear Data-2004/09/28, Santa Fe GeV excess: Optimized model Uses all sky and antiprotons & gammas to fix the nucleon and electron spectra  Uses antiprotons to fix the intensity of CR HE  Uses gammas to adjust  the nucleon spectrum at LE  the intensity of the CR electrons (uses also synchrotron index)  Uses EGRET data up to 100 GeV protons electrons x4 x1.8 antiprotons E k, GeV

Igor V. Moskalenko/NASA-GSFC 23 Nuclear Data-2004/09/26-10/1Santa Fe, NM Longitude Profiles |b|<5° MeV 2-4 GeV GeV 4-10 GeV

Igor V. Moskalenko/NASA-GSFC 24 Nuclear Data-2004/09/26-10/1Santa Fe, NM Extragalactic Gamma-Ray Background Predicted vs. observed E, MeV E 2 xF Sreekumar et al Strong et al Elsaesser & Mannheim, astro-ph/ Blazars Cosmological neutralinos E, GeV

Igor V. Moskalenko/NASA-GSFC 25 Nuclear Data-2004/09/26-10/1Santa Fe, NM Conclusions I Accurate measurements of nuclear species in CR, secondary antiprotons, and diffuse γ-rays simultaneously may provide a new vital information for Astrophysics – in broad sense, Particle Physics, and Cosmology. Gamma rays: GLAST is scheduled to launch in 2007 – diffuse gamma rays is one of its priority goals CR species: New measurements at LE & HE simultaneously are highly desirable (Pamela, Super-TIGER, AMS…), also sec. positrons ! Hunter et al. region: l=300°-60°,|b|<10° Dark Matter Z h increase Be 10 /Be 9 E k, MeV/nucleon B/C E k, MeV/nucleon

Igor V. Moskalenko/NASA-GSFC 26 Nuclear Data-2004/09/26-10/1Santa Fe, NM Conclusions II Antiprotons: Pamela (2005), AMS (2008) and a new BESS-polar instrument to fly a long- duration balloon mission (in 2004, 2006…), we thus will have more accurate and restrictive antiproton data HE electrons: Several missions are planned to target specifically HE electrons We must be ready…! GALPROP is a propagation model to play now; the accuracy depends very much on the accuracy of the nuclear production cross sections

Igor V. Moskalenko/NASA-GSFC 27 Nuclear Data-2004/09/26-10/1Santa Fe, NM Thank you !