Determents of Housing Prices. What & WHY Our goal was to discover the determents of rising home prices and to identify any anomies in historic housing.

Slides:



Advertisements
Similar presentations
Movies Josh Finkelstein John Hottinger Jenny Yaillen Xiang Huang Edward Han Rory MacDonald Tyronne Martin.
Advertisements

COINTEGRATION 1 The next topic is cointegration. Suppose that you have two nonstationary series X and Y and you hypothesize that Y is a linear function.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LGDPI) Method: Least Squares Sample (adjusted): Included observations: 44 after adjustments.
============================================================ Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations:
AUTOCORRELATION 1 The third Gauss-Markov condition is that the values of the disturbance term in the observations in the sample be generated independently.
FITTING MODELS WITH NONSTATIONARY TIME SERIES 1 Detrending Early macroeconomic models tended to produce poor forecasts, despite having excellent sample-period.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Three Ending Tuesday, September 11 (Note: You must go over these slides and complete every.
Chapter 4 Using Regression to Estimate Trends Trend Models zLinear trend, zQuadratic trend zCubic trend zExponential trend.
1 TIME SERIES MODELS: STATIC MODELS AND MODELS WITH LAGS In this sequence we will make an initial exploration of the determinants of aggregate consumer.
LOGO Analysis of Unemployment Qi Li Trung Le David Petit Brian Weinberg Dwaraka Polakam Doug Skipper-Dotta Team #4.
NBA Statistical Analysis Econ 240A. Intro. to Econometrics. Fall Group 3 Lu Mao Ying Fan Matthew Koson Ryan Knefel Eric Johnson Tyler Nelson Grop.
Angela Sordello Christopher Friedberg Can Shen Hui Lai Hui Wang Fang Guo.
Factors Determining the Price Of Used Mid- Compact Size Vehicles Team 4.
1 Lecture Twelve. 2 Outline Failure Time Analysis Linear Probability Model Poisson Distribution.
TAKE HOME PROJECT 2 Group C: Robert Matarazzo, Michael Stromberg, Yuxing Zhang, Yin Chu, Leslie Wei, and Kurtis Hollar.
Marietta College Week 14 1 Tuesday, April 12 2 Exam 3: Monday, April 25, 12- 2:30PM Bring your laptops to class on Thursday too.
1 Econ 240 C Lecture 3. 2 Part I Modeling Economic Time Series.
1 Econ 240 C Lecture White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output.
Is There a Difference?. How Should You Vote? Is “Big Government” better?Is “Big Government” better? –Republicans want less government involvement. –Democrats.
Global Warming: Is It True? Peter Fuller Odeliah Greene Amanda Smith May Zin.
1 Econ 240 C Lecture Time Series Concepts Analysis and Synthesis.
Car Sales Analysis of monthly sales of light weight vehicles. Laura Pomella Karen Chang Heidi Braunger David Parker Derek Shum Mike Hu.
1 Econ 240 C Lecture 3. 2 Time Series Concepts Analysis and Synthesis.
Why Can’t I Afford a Home? By: Philippe Bonnan Emelia Bragadottir Troy Dewitt Anders Graham S. Matthew Scott Lingli Tang.
1 Motor Vehicle Accidents Hunjung Kim Melissa Manfredonia Heidi Braunger Yaming Liu Jo-Yu Mao Grace Lee December 1, 2005 Econ 240A Project.
1 Econ 240A Power 7. 2 This Week, So Far §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and HypothesisTesting.
Determining what factors have an impact on the burglary rate in the United States Team 7 : Adam Fletcher, Branko Djapic, Ivan Montiel, Chayaporn Lertarattanapaiboon,
Violent Crime in America ECON 240A Group 4 Thursday 3 December 2009.
Lecture Week 3 Topics in Regression Analysis. Overview Multiple regression Dummy variables Tests of restrictions 2 nd hour: some issues in cost of capital.
Alcohol Consumption Allyson Cady Dave Klotz Brandon DeMille Chris Ross.
California Expenditure VS. Immigration By: Daniel Jiang, Keith Cochran, Justin Adams, Hung Lam, Steven Carlson, Gregory Wiefel Fall 2003.
So far, we have considered regression models with dummy variables of independent variables. In this lecture, we will study regression models whose dependent.
1 Lecture One Econ 240C. 2 Outline Pooling Time Series and Cross- Section Review: Analysis of Variance –one-way ANOVA –two-way ANOVA Pooling Examples.
GDP Published by: Bureau of Economic Analysis Frequency: Quarterly Period Covered: prior quarter Volatility: Moderate Market significance: very high Web.
MLB STATS Group SIX Astrid AmsallemJoel De Martini Naiwen ChangQi He Wenjie HuangWesley Thibault.
1 Lecture One Econ 240C. 2 Einstein’s blackboard, Theory of relativity, Oxford, 1931.
1 Power Fifteen Analysis of Variance (ANOVA). 2 Analysis of Variance w One-Way ANOVA Tabular Regression w Two-Way ANOVA Tabular Regression.
1 Econ 240A Power 7. 2 Last Week §Normal Distribution §Lab Three: Sampling Distributions §Interval Estimation and HypothesisTesting.
Zhen Tian Jeff Lee Visut Hemithi Huan Zhang Diana Aguilar Yuli Yan A Deep Analysis of A Random Walk.
1 Power Fifteen Analysis of Variance (ANOVA). 2 Analysis of Variance w One-Way ANOVA Tabular Regression w Two-Way ANOVA Tabular Regression.
Forecasting Fed Funds Rate Group 4 Neelima Akkannapragada Chayaporn Lertrattanapaiboon Anthony Mak Joseph Singh Corinna Traumueller Hyo Joon You.
U.S. Tax Revenues and Policy Implications A Time Series Approach Group C: Liu He Guizi Li Chien-ju Lin Lyle Kaplan-Reinig Matthew Routh Eduardo Velasquez.
Matt Mullens Gulsah Gunenc Alex Keyfes Gaoyuan Tian Andrew Booth.
EC220 - Introduction to econometrics (chapter 12)
DURBIN–WATSON TEST FOR AR(1) AUTOCORRELATION
FORECASTING WITH REGRESSION MODELS TREND ANALYSIS BUSINESS FORECASTING Prof. Dr. Burç Ülengin ITU MANAGEMENT ENGINEERING FACULTY FALL 2011.
Predicting volatility: a comparative analysis between GARCH Models and Neural Network Models MCs Student: Miruna State Supervisor: Professor Moisa Altar.
What decides the price of used cars? Group 1 Jessica Aguirre Keith Cody Rui Feng Jennifer Griffeth Joonhee Lee Hans-Jakob Lothe Teng Wang.
A N E MPIRICAL A NALYSIS OF P ASS -T HROUGH OF O IL P RICES TO I NFLATION : E VIDENCE FROM N IGERIA. * AUWAL, Umar Department of Economics, Ahmadu Bello.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Five Ending Wednesday, September 26 (Note: Exam 1 is on September 27)
Electric Utility Cost Data for Electricity Generation by Nerlove and Christensen-Greene Data is similar to Electric Utility data described in McGuigan.
The Academy of Economic Studies Bucharest Doctoral School of Banking and Finance DISSERTATION PAPER CENTRAL BANK REACTION FUNCTION MSc. Student: ANDRA.
1 Economics 240A Power Eight. 2 Outline n Maximum Likelihood Estimation n The UC Budget Again n Regression Models n The Income Generating Process for.
NONPARAMETRIC MODELING OF THE CROSS- MARKET FEEDBACK EFFECT.
SPURIOUS REGRESSIONS 1 In a famous Monte Carlo experiment, Granger and Newbold fitted the model Y t =  1 +  2 X t + u t where Y t and X t were independently-generated.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Four Ending Wednesday, September 19 (Assignment 4 which is included in this study guide.
PARTIAL ADJUSTMENT 1 The idea behind the partial adjustment model is that, while a dependent variable Y may be related to an explanatory variable X, there.
AUTOCORRELATION 1 Assumption C.5 states that the values of the disturbance term in the observations in the sample are generated independently of each other.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: exercise 4.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
2010, ECON Hypothesis Testing 1: Single Coefficient Review of hypothesis testing Testing single coefficient Interval estimation Objectives.
FUNCTIONAL FORMS OF REGRESSION MODELS Application 5.
Air pollution is the introduction of chemicals and biological materials into the atmosphere that causes damage to the natural environment. We focused.
EC208 – Introductory Econometrics. Topic: Spurious/Nonsense Regressions (as part of chapter on Dynamic Models)
With the support of the European Commission 1 Competitiveness of the SME’s in Albania A review of the business conditions with a focus on financing conditions.
Partial Equilibrium Framework Empirical Evidence for Argentina ( )
Page 0 Modelling Effective Office Rents by Matt Hall DTZ, 125 Old Broad Street, London, EC2N 2BQ Tel: +44 (0)
T HE SAT S CORES TELL A STORY OF THE U.S. D EMOGRAPHIC ECON 240A.
WSUG M AY 2012 EViews, S-Plus and R Damian Staszek Bristol Water.
Table 4. Regression Statistics for the Model
Presentation transcript:

Determents of Housing Prices

What & WHY Our goal was to discover the determents of rising home prices and to identify any anomies in historic housing prices. To figure out if current housing market is over priced – if there is a real estate bubble.

Hypothesis Population and wealth increases drive up home prices

HOW 1)We collected average home prices in the US: on a monthly basis ( ). 2) Then we gathered data we thought would be good determents of home prices 3) Set up a model and ran a regression 4) Modified our model 5) Interpreted the results

Exploratory Data Analysis Variables: Mortgage rates, unemployment rates,CPI, PPI, S&P Index (alterative INV), and income per capita. Sources: Economagic and the St. Louis Fed.

STAT Analysis

mean home prices vs income per capita

Dependent Variable: AVGHOMESALES Method: Least Squares Date: 11/20/02 Time: 18:16 Sample: 1975: :07 Included observations: 331 VariableCoefficientStd. Errort-StatisticProb. INCPERCAP R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid1.96E+10 Schwarz criterion Log likelihood Durbin-Watson stat

all variables

Dependent Variable: AVGHOMESALES Method: Least Squares Date: 11/20/02 Time: 18:03 Sample: 1975: :07 Included observations: 331 VariableCoefficientStd. Errort-StatisticProb. CPI PPI UNEMP_RATE INCPERCAP MRTG_RATE MONTHS C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid1.28E+10 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

time vs home price

Dependent Variable: AVGHOMESALES Method: Least Squares Date: 11/20/02 Time: 18:39 Sample: 1975: :07 Included observations: 331 VariableCoefficientStd. Errort-StatisticProb. MONTHS C R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid2.13E+10 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

Further Analysis Changes in income per capita have no effect on changes in mean home prices This is also true for changes in mortgage, unemployment rates, S&P and CPI.

Conclusions 1) real estate prices move in long-term cycles 2) time is most significant variable; it that helps explain price increases:

Center for Economic and Policy Research -in the last 7 years, home sale prices have increased nearly 30 percent more than the overall rate of inflation -there is no obvious explanation for a sudden increase in relative demand for housing which could explain the price rise - the only plausible explanation for sudden surge in home prices is the existance of a housing bubble -major factor driving housing sales is the expectation that housing prices will be higher in the future - the collapse of the bubble will lead to a loss of between $1.3 trillion and $2.6 trillion of housing wealth

Questions ?