ICS-171:Notes 1: 1 Welcome to CompSci 171 Fall 2010 Introduction to AI. Instructor:Max Welling, Office hours:Wed. 4-5pm in BH

Slides:



Advertisements
Similar presentations
CSCI 4800 ARTIFICIAL INTELLIGENCE
Advertisements

Artificial Intelligence: Introduction
ARTIFICIAL INTELLIGENCE
Additional Topics ARTIFICIAL INTELLIGENCE
AI 授課教師:顏士淨 2013/09/12 1. Part I & Part II 2  Part I Artificial Intelligence 1 Introduction 2 Intelligent Agents Part II Problem Solving 3 Solving Problems.
Artificial Intelligence Computational Intelligence Alien Intelligence? Summer 2004 Dennis Kibler.
CS 480 ARTIFICIAL INTELLIGENCE Instructor: B. Ravikumar Computer Science Department 116 I Darwin Hall Class meets: Fridays 9 to 12.
Artificial Intelligence A Modern Approach Dennis Kibler.
CPSC 7373: Artificial Intelligence Jiang Bian, Fall 2014 University of Arkansas for Medical Sciences University of Arkansas at Little Rock.
1946: ENIAC heralds the dawn of Computing. I propose to consider the question: “Can machines think?” --Alan Turing, : Turing asks the question….
ICS-171:Notes 1: 1 Welcome to ICS 171 winter 2006 Introduction to AI. Instructor:Max Welling, Office hours:Fr pm in CS
Introduction to Artificial Intelligence CSE 473 Winter 1999.
CS 531/331: Introduction to AI
CSE 471/598,CBS598 Introduction to Artificial Intelligence Fall 2004
CS 480 Lec 2 Sept 4 complete the introduction Chapter 3 (search)
Random Administrivia In CMC 306 on Monday for LISP lab.
1. 1 Text Book Artificial Intelligence: A Modern Approach, S. Russell and P. Norvig, 3/e, Prentice Hall, 2010 References  Artificial Intelligence, Patrick.
D Goforth - COSC 4117, fall Notes  Program evaluation – Sept Student submissions  Mon. Sept 11, 4-5PM  FA 181 Comments to committee are.
INSTRUCTOR: DR. XENIA MOUNTROUIDOU CS CS Artificial Intelligence.
ARTIFICIAL INTELLIGENCE Introduction: Chapter Textbook: S. Russell and P. Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2003,
Artificial Intelligence
Greg GrudicIntroduction to AI1 Introduction to Artificial Intelligence CSCI 3202 Fall 2007 Greg Grudic.
ARTIFICIAL INTELLIGENCE
CPSC 171 Artificial Intelligence Read Chapter 14.
Artificial Intelligence
FOUNDATIONS OF ARTIFICIAL INTELLIGENCE Introduction: Chapter 1.
ARTIFICIAL INTELLIGENCE Introduction: Chapter 1. Outline Course overview What is AI? A brief history The state of the art.
CSW 4701 AI Spring 2013 Introduction: Chapter Course home page: Textbook: S. Russell and P. Norvig.
Slide Set 1: Introduction: 1 Introduction to Artificial Intelligence CSE 401: Artificial Intelligence.
1 AI and Agents CS 171/271 (Chapters 1 and 2) Some text and images in these slides were drawn from Russel & Norvig’s published material.
ICS-171:Notes 1: 1 Welcome to CompSci 171 spring 2007 Introduction to AI. Instructor:Max Welling, Office hours:Fr. 12-1pm in BH
CISC4/681 Introduction to Artificial Intelligence1 Introduction – Artificial Intelligence a Modern Approach Russell and Norvig: 1.
Introduction: Chapter 1
Artificial Intelligence: An Introduction Definition of AI Foundations of AI History of AI Advanced Techniques.
CSC4444: Artificial Intelligence Fall 2011 Dr. Jianhua Chen Slides adapted from those on the textbook website.
IFT3335 – Intruduction à l’intelligence artrificielle basé sur le cours de NUS et Berkeley Introduction: Chapter 1.
CNS 4470 Artificial Intelligence. What is AI? No really what is it? No really what is it?
Inteligenica Artificial FIE - UMSNH. Semestre 9 Introduccion: Capitulo 1.
Artificial Intelligence CS 363 Kawther Abas Lecture 1 Introduction 5/4/1435.
ARTIFICIAL INTELLIGENCE 2009 Ira Pohl TIM Oct 29, 2009.
Lecture 1 – AI Background Dr. Muhammad Adnan Hashmi 1.
Introduction to Artificial Intelligence Mitch Marcus CIS391 Fall, 2008.
Due Monday Read chapter 2 Homework: –Chapter 1, exercises –Answer each in 100 words or less. Send to from your preferred.
Artificial Intelligence
So what is AI?.
AI: Can Machines Think? Juntae Kim Department of Computer Engineering Dongguk University.
1 Lecture # 1 Introduction to Artificial Intelligence By NADEEM MAHMOOD ASSISTANT PROFESSOR DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF KARACHI.
Lecture 1 – AI Background Dr. Muhammad Adnan Hashmi 1.
What is Artificial Intelligence? What is artificial intelligence? It is the science and engineering of making intelligent machines, especially intelligent.
ARTIFICIAL INTELLIGENCE. Goals of this Course To introduce you to the field of Artificial Intelligence (AI) To explain the challenges inherent in building.
FOUNDATIONS OF ARTIFICIAL INTELLIGENCE
Artificial Intelligence Lecture 2 Department of Computer Science, International Islamic University Islamabad, Pakistan.
Princess Nora University Artificial Intelligence CS 461 Level 8 1.
1 Artificial Intelligence & Prolog Programming CSL 302.
Artificial Intelligence Lecture 1. Introduction. Course Outline The course consists of:  15 lectures slots (may use some for tutorials);  tutorial exercises;
CSC 450 Artificial Intelligence. W HAT IS AI? Thinking humanlyThinking rationally Acting humanlyActing rationally Revision!...
 Why taking Artificial Intelligence  What is intelligence? What is artificial intelligence?  A very brief history of AI ◦ Modern successes: Stanley.
CMPT 310 OLIVER SCHULTE Introduction to Artificial Intelligence.
Artificial Intelligence
Introduction to Artificial Intelligence
Introduction to Artificial Intelligence
CSC 290 Introduction to Artificial Intelligence
CS4341 Introduction to Artificial Intelligence
Welcome to CompSci 171 spring 2007 Introduction to AI.
Introduction to Artificial Intelligence
AI and Agents CS 171/271 (Chapters 1 and 2)
CS 404 Artificial Intelligence
Hong Cheng SEG4560 Computational Intelligence for Decision Making Chapter 1: Introduction Hong Cheng
Artificial Intelligence
Presentation transcript:

ICS-171:Notes 1: 1 Welcome to CompSci 171 Fall 2010 Introduction to AI. Instructor:Max Welling, Office hours:Wed. 4-5pm in BH Teaching Assistant: Levi Boyles Book: Artificial Intelligence, A Modern Approach Russell & Norvig Prentice Hall Note: 3 rd edition! (I allow 2 nd edition as well)

ICS-171:Notes 1: 2 Grading: -Homework (10%, mandatory) -Quizzes (about 8 quizzes) (30%) You will need green large scantron files for this! -One project (30%) -Final Exam (30%) Graded Quizzes/Exams -Answers will be available on the class website Grading Disputes: Turn in your work for re-grading at the discussion section to the TA within 1 week. Note: we will re-grade the entire exam: so your new grade could be higher or lower. Course related issues can be addressed in the first 10 minutes of every class.

ICS-171:Notes 1: 3 Academic (Dis)Honesty It is each student’s responsibility to be familiar with UCI’s current policies on academic honesty Violations can result in getting an F in the class (or worse) Please take the time to read the UCI academic honesty policy –in the Fall Quarter schedule of classes –or at: Academic dishonesty is defined as: –Cheating –Dishonest conduct –Plagiarism –Collusion Note: we have been instructed to be tougher on cheating. Everything will be reported.

ICS-171:Notes 1: 4 Syllabus: Lecture 1. Introduction: Goals, history (Ch.1) Lecture 2. Philosophical Foundations (Ch.26). Lecture 2. Agents (Ch.2) Lecture 3-4. Uninformed Search (Ch.3) Lecture 5-6 Informed Search (Ch.4) Lecture 7-8. Constraint satisfaction (Ch.5).  Project Lecture 9-10 Games (Ch.6) Lecture Propositional Logic (Ch.7) Lecture First Order Logic (Ch.8) Lecture Inference in logic (Ch.9) Lecture 18 Uncertainty (Ch.13) Lecture 20. AI Present and Future (Ch.27). Final This is a very rough syllabus. It is almost certainly the case that we will deviate from this. Some chapters will be treated only partially.

ICS-171:Notes 1: 5 1.No class Oct 12 2.No discussion in first week 3.Quizzes on Thursdays, first 20 mins in class 4.First quiz Oct. 7 5.Homework due next Monday midnight. 6.We will check if you answered all questions. You must do your HW yourself. You can work in a group, but not copy from a friend. Homework questions will come back in quizzes. 7. Remind me to break for 5-10 mins at Important Notes

ICS-171:Notes 1: 6 Project Build a program that will generate hard random mazes. Build a program that can solve mazes. Compete?

ICS-171:Notes 1: 7 Philosophical Foundations Weak AI: machines can act as if they were intelligent Strong AI: machines have minds. Questions: what is a mind? Will the answer be important for AI? Objection 1: humans are not subject to Godel’s theorem Objection 2: humans behavior cannot be modeled by rules Objection 3: machines cannot be conscious (what is consciousness ?) Can a “brain in a vat” have the same brain states as in a body? Brain prosthesis experiment, are we a machine afterwards? Chinese room: Does the Chinese room have a mind? Do we need to give up the “illusion” that man is more than a machine? HW: read chapter 26 on philosophical foundations and read piece on intelligence. Form your own opinion and discuss this in class.

ICS-171:Notes 1: 8 Meet HAL 2001: A Space Odyssey –classic science fiction movie from HAL –part of the story centers around an intelligent computer called HAL –HAL is the “brains” of an intelligent spaceship –in the movie, HAL can speak easily with the crew see and understand the emotions of the crew navigate the ship automatically diagnose on-board problems make life-and-death decisions display emotions In 1969 this was science fiction: is it still science fiction?

ICS-171:Notes 1: 9 Ethics People might lose jobs People might have too much leasure time People might lose sense of uniqueness People might lose privacy rights People might not be held accountable for certain actions Machines may replace the human race...

ICS-171:Notes 1: 10 Different Types of Artificial Intelligence Modeling exactly how humans actually think –cognitive models of human reasoning Modeling exactly how humans actually act –models of human behavior (what they do, not how they think) Modeling how ideal agents “should think” –models of “rational” thought (formal logic) –note: humans are often not rational! Modeling how ideal agents “should act” –rational actions but not necessarily formal rational reasoning –i.e., more of a black-box/engineering approach Modern AI focuses on the last definition –we will also focus on this “engineering” approach –success is judged by how well the agent performs -- modern methods are also inspired by cognitive & neuroscience (how people think).

ICS-171:Notes 1: 11 Acting humanly: Turing Test Turing (1950) "Computing machinery and intelligence": "Can machines think?"  "Can machines behave intelligently?" Operational test for intelligent behavior: the Imitation Game Suggested major components of AI: - knowledge representation - reasoning, - language/image understanding, - learning Can you think of a theoretical system that could beat the Turing test yet you wouldn’t find it very intelligent?

ICS-171:Notes 1: 12 Acting rationally: rational agent Rational behavior: Doing that was is expected to maximize one’s “utility function” in this world. An agent is an entity that perceives and acts. A rational agent acts rationally. This course is about designing rational agents Abstractly, an agent is a function from percept histories to actions: [f: P*  A ] For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance Caveat: computational limitations make perfect rationality unachievable  design best program for given machine resources

ICS-171:Notes 1: 13 Academic Disciplines important to AI. PhilosophyLogic, methods of reasoning, mind as physical system, foundations of learning, language, rationality. MathematicsFormal representation and proof, algorithms, computation, (un)decidability, (in)tractability, probability. Economicsutility, decision theory, rational economic agents Neuroscienceneurons as information processing units. Psychology/ how do people behave, perceive, process Cognitive Scienceinformation, represent knowledge. Computer building fast computers engineering Control theorydesign systems that maximize an objective function over time Linguisticsknowledge representation, grammar

ICS-171:Notes 1: 14 History of AI 1943 McCulloch & Pitts: Boolean circuit model of brain 1950 Turing's "Computing Machinery and Intelligence" 1956Dartmouth meeting: "Artificial Intelligence" adopted 1950sEarly AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine 1965Robinson's complete algorithm for logical reasoning 1966—73AI discovers computational complexity Neural network research almost disappears 1969—79Early development of knowledge-based systems AI becomes an industry Neural networks return to popularity AI becomes a science The emergence of intelligent agents

ICS-171:Notes 1: 15 State of the art Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997 Proved a mathematical conjecture (Robbins conjecture) unsolved for decades No hands across America (driving autonomously 98% of the time from Pittsburgh to San Diego) During the 1991 Gulf War, US forces deployed an AI logistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft Proverb solves crossword puzzles better than most humans Stanford vehicle in Darpa challenge completed autonomously a 132 mile desert track in 6 hours 32 minutes.

ICS-171:Notes 1: 16 Consider what might be involved in building a “intelligent” computer…. What are the “components” that might be useful? –Fast hardware? –Foolproof software? –Speech interaction? speech synthesis speech recognition speech understanding –Image recognition and understanding ? –Learning? –Planning and decision-making?

ICS-171:Notes 1: 17 Can Computers play Humans at Chess? Chess Playing is a classic AI problem –well-defined problem –very complex: difficult for humans to play well Conclusion: YES: today’s computers can beat even the best human Garry Kasparov (current World Champion ) Deep Blue Deep Thought Points Ratings

ICS-171:Notes 1: 18 Can we build hardware as complex as the brain? How complicated is our brain? –a neuron, or nerve cell, is the basic information processing unit –estimated to be on the order of neurons in a human brain –many more synapses (10 14 ) connecting these neurons –cycle time: seconds (1 millisecond) How complex can we make computers? –10 6 or more transistors per CPU –supercomputer: hundreds of CPUs, 10 9 bits of RAM –cycle times: order of seconds Conclusion –YES: in the near future we can have computers with as many basic processing elements as our brain, but with far fewer interconnections (wires or synapses) than the brain much faster updates than the brain –but building hardware is very different from making a computer behave like a brain!

ICS-171:Notes 1: 19 Can Computers Learn and Adapt ? Learning and Adaptation –consider a computer learning to drive on the freeway –we could code lots of rules about what to do –and/or we could have it learn from experience –machine learning allows computers to learn to do things without explicit programming Conclusion: YES, computers can learn and adapt, when presented with information in the appropriate way Darpa’s Grand Challenge. Stanford’s “Stanley” drove 150 without supervision in the Majove dessert

ICS-171:Notes 1: 20 Recognition v. Understanding (like Speech) –Recognition and Understanding of Objects in a scene look around this room you can effortlessly recognize objects human brain can map 2d visual image to 3d “map” Why is visual recognition a hard problem? Conclusion: mostly NO: computers can only “see” certain types of objects under limited circumstances: but YES for certain constrained problems (e.g., face recognition) Can Computers “see”?

ICS-171:Notes 1: 21 In the computer vision community research compete to improve recognition performance on standard datasets

ICS-171:Notes 1: 22 Conclusion AI is about building intelligent agents (robots) There are many very interesting sub-problems to solve: –Learning, vision, speech, planning, … Surprising progress has been made (autonomous cars, chess computers) but surprising lack of progress is also a fact (visual object recognition). There is no doubts that AI has a bright future: technology is increasingly getting smart.