1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.

Slides:



Advertisements
Similar presentations
03/19/2003 Week #4 江支弘 Chapter 4 Making Predictions: Regression Analysis.
Advertisements

1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 企業決策分析之報告結果與計量模型型式 之選擇 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
:Word Morphing ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10508:word morphing 解題者:楊家豪 解題日期: 2006 年 5 月 21 日 題意: 第一行給你兩個正整數, 第一個代表下面會出現幾個字串,
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
社研法助教課, 2007/04/11 如何閱讀 SPSS 圖表 (迴歸分析篇) By 黃昱珽. 小考題目 大華用 SPSS 得到以下的資料: (圖表見下面) 說明 : BABYMORT = 嬰兒死亡率, GDP_CAP = 一國國民生產毛額, LIT_FEMA = 女性識字率。 資料來源 : 聯合國,
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容: 質化的及有限的因變數模型 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
1 Simple Regression ( 簡單迴歸分析 ) Social Research Methods 2109 & 6507 Spring, 2006 March 8, 9, 13, 2006.
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
Section 2.3 Least-Squares Regression 最小平方迴歸
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 質化的及有限的因變數模型 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容:利用分公司之追蹤資料進行企業決策分析 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
Structural Equation Modeling Chapter 7 觀察變數路徑分析=路徑分析 觀察變數路徑分析.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容:時間序列與橫斷面資料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
民意調查的分析 II 蔡佳泓 政大選舉研究中心 副研究員. 課程大綱 假設的檢定 研究假設 H1: 研究假設 ( 例: X 與 Y 相關 ) H0: 虛無假設 ( 例: X 與 Y 無關 ) 檢定結果:接受虛無假設或拒斥虛無假 設,但不代表接受研究假設.
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:報告結果 與選擇函數型式 參考書目: Hill, C. R., W. E. Griffiths, and.
信度.
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容: 質化因素在企業決策分析之重要性 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Ahoy, Pirates! ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11402: Ahoy, Pirates! 解題者:李重儀 解題日期: 2008 年 8 月 26 日 題意:有一個海盜島有 N 個海盜,他們的編號 (id)
Lecture 7 Sorting in Linear Time. Sorting in Linear Time2 7.1 Lower bounds for sorting 本節探討排序所耗用的時間複雜度下限。 任何一個以比較為基礎排序的演算法,排序 n 個元 素時至少耗用 Ω(nlogn) 次比較。
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
觀測量的權 權的觀念與計算.
1 政治大學國務院國安碩專班選修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and.
變異數分析 迴歸分析 因素分析 區別分析 集區分析
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 2. Recurrence Relations (遞迴關係)
1 政治大學國務院國安碩專班選修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:報告結果 與選擇函數型式 參考書目: Hill, C. R., W. E. Griffiths,
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
: Function Overloading ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11032:Function Overloading 解題者:許智祺 解題日期: 2007 年 5 月 8 日 題意:判對輸入之數字是否為.
描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)
1 Part IB. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple regression Spring 2007.
Unit 3 : 變異數分析 --ANOVA 3.1 範例說明 行銷研究方面, One-Way ANOVA 可 用以研擬市場區隔及目標選擇策略。 教育研究方面,此一模式可用以評估 教師之教學績效。 農業研究方面,此一模式則可用以挑 選使玉米收穫量極大化的肥料。
Building a knowledge base for MIS research: A meta-analysis of a systems success model Mark I Hwang, John C Windsor, Alan Pryor Information Resources Management.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型:報告結果 與選擇函數型式 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
2005/7 Linear system-1 The Linear Equation System and Eliminations.
Cluster Analysis 目的 – 將資料分成幾個相異性最大的群組 基本問題 – 如何衡量事務之間的相似性 – 如何將相似的資料歸入同一群組 – 如何解釋群組的特性.
Structural Equation Modeling Chapter 8 潛伏變數路徑分析=完全 SEM 潛伏變數路徑分析.
連續隨機變數 連續變數:時間、分數、重量、……
Inference for Simple Regression Social Research Methods 2109 & 6507 Spring 2006 March 15, 16, 2006.
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
PART 2 近觀市場 5 需求與供給彈性 CHAPTER. PART 2 近觀市場 5 需求與供給彈性 CHAPTER.
幼兒行為觀察與記錄 第八章 事件取樣法.
1 Chemical and Engineering Thermodynamics Chapter 1 Introduction Sandler.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Presentation transcript:

1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007

2 Multiple Regression Multiple regression: contains two or more independent variables ( 研究兩個或兩個以上自變 數對依變數的影響 ) –Why? Remember that human behavior or social phenomena are complicated and multivariate. –Explanation and prediction done by multiple regression: more “accurate” In terms of analysis, multiple regression can be seen as the extension of simple regression ( 複迴 歸分析方法基本上是簡單迴歸分析的延伸 )

3 Multiple Regression Model: start from two independent variables Equation: y i = a+ b 1 x 1 + b 2 x 2 + ε i

4 Some Assumptions of Multiple Regression Here, we just discuss some important assumptions ( 只討論部分複迴歸模型的假 設 ) –V(ε i ) = σ 2, I = 1, …, n ( 變異數齊一性 ) –Cov (ε i, ε j ) = 0, i ≠j, I, j = 1, …, n ( 任何兩組誤差 項不相關 ) –Cov (x j, ε i ) = 0, j = 1, …, k, i = 1, …, n ( 誤差項 與 k 個自變數無關 ) –r Xi, Xj ≠±1 ( 自變數彼此間無完全的線性關係 )

5 Multiple regression estimation Follow the same idea of simple regression: minimize SSE ( 估計值與觀察值差的平方和要最 小 ) But here, we don’t usually use ordinary least squares (OLS) method. Instead, we use Maximum Likelihood Estimator ( 通常不用 OLS ,用最大概似估計式 ) MLE: widely used in regression estimation, difficult to compute by hand, often get MLE by computer

6 To estimate multiple regression:

7 An example: education, work tenure, and income

8 Inference for multiple regression R 2 = (explained variance) / (total variance) = ( 可被迴歸解釋的變異 )/ ( 總變異 ) Note: a problem of R 2 — 若在複迴歸公式不斷 加入自變數 ( 有些可能與模型無關 ) 時, R 2 會 提高。如此會誤導迴歸公式的解釋能力。 Solution: use adjusted R 2 ( 調整的判定係數 ) [ 經過自由度的調整,即調整任意增加不相 關的自變數 ]

9 F 檢定 : global test

10 Individual regression coefficients: variance, confidence interval ( 個別 迴歸參數的檢定與信賴區間 ) Follow the same idea of simple regression We usually rely on computer computation, ex: look at SPSS output. Interpretation of regression coefficients: 記得 : 現在有二個以上的變數,解釋時要加上: 當某變數固定時,另一變數 …

11 Question: Which variable in the multiple regression model can explain more? 如何比較各自變數對依變數解釋上 的相對重要性?

12 Compare standardized regression coefficients The issue is that independent variables have different units. ( 比較各自變數對依變 數解釋上的相對重要性時,因各自變數的 單位不同,不能直接比較。 ) SOLUTION : 用標準化的迴歸係數 (standardized regression coefficients) 標準化的迴歸係數 = ( β i _hat ) (S xi /S yi ) 標準化:去除單位不同的影響

13 SPSS Example: Education, Work tenure, and Salary

14

15 Dummy Variables ( 虛擬變數 ) Question: Can I include qualitative (or categorical) variables in the regression model? 〔能將質的變數(或類別變數)放 在迴歸模型裏嗎?〕 Answer: Yes, you can include qualitative variables in the regression model, but you have to transform those variables into dummy variables. ( 質的變數可以放在迴歸 模型內,但需轉成虛擬變數的形式。 )

16 What is a dummy variable? Dummy variables: use (0, 1) to code values of a variable ( 用 0, 1 來區分類別資料 ) Ex: 1. gender, male = 0, female = 1 2. education: below high school, high school, college and above Solution: 自變數有 n 個類別,就需要 (n-1) 個虛 擬變數,且所有的虛擬變數都要一起進入迴 歸模型。 ) 以此題為例,需兩個虛擬變數。

17 Example of a dummy variable, education: EducationHigh school below High schoolCollege and above educ_1010 educ_2001

18 Multiple regression with dummy variables Ex: two independent variables, one is a dummy variable Regression equation: (y_hat) = a + b 1 x + b 2 z (z = gender, male = 0, female = 1) Can get: (y_hat|x, z=0) = a + b 1 x (y_hat|x, z=1) = (a + b 2 )+ b 1 x 〔注意:二個迴歸線,截距不同〕 [ 有時會得到斜率 不同的二個迴歸線,即代表二個自變數有交叉影 響 (interaction effect).]

19 Two regression lines

20 The estimation and inference of regression models with dummy variables: Follow the same analyses we discussed before.

21 Revisit Education, Work Tenure, Gender, and Salary

22